Millimeter-Wave Spectroscopy of Phenyl Isocyanate

Slides:



Advertisements
Similar presentations
Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Advertisements

A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
LINEAR MOLECULE ROTATIONAL TRANSITIONS:  J = 4  J = 3  J = 2  J = 1  J = 0.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Microwave Spectroscopy Rotational Spectroscopy
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
60th OSU International Symposium on Molecular Spectroscopy TF03 The millimeter-wave rotational spectrum of lactic acid Zbigniew Kisiel, Ewa Białkowska-Jaworska,
Revisit vibrational Spectroscopy
65th OSU International Symposium on Molecular Spectroscopy RH14.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Fitting the high-resolution spectroscopic data for NCNCS Zbigniew Kisiel, a Brenda P. Winnewisser, b Manfred Winnewisser, b Frank C. De Lucia, b Dennis.
ROTATIONAL SPECTROSCOPY
The rotational spectrum of chlorine nitrate (ClONO 2 ): 6 and the 5 / 6 9 dyad Zbigniew Kisiel, Ewa Białkowska-Jaworska Institute of Physics, Polish Academy.
HIGH RESOLUTION SPECTROSCOPY USING A TUNABLE THz SYNTHESIZER BASED ON PHOTOMIXING Arnaud Cuisset, Laboratoire de Physico-Chimie de l’Atmosphère, Maison.
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
June 21, 2012 Submillimeter Spectrum of Chloromethane: Analysis of the V 3 =1 Excited State Presented by: Alissa Fisher Auburn University and U.S. Army.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Analysis of interactions between excited vibrational states in the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics,
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
THz Spectroscopy of 1d-ethane: Assignment of v 18 ADAM M. DALY, BRIAN J. DROUIN, LINDA BROWN Jet Propulsion Laboratory, California Institute of Technology,
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev,
Chemistry 213 Practical Spectroscopy
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Christopher T. Dewberry, Garry S
Stéphane Bailleux University of Lille
Department of Chemistry, University of Wisconsin, Madison
High resolution far-IR spectroscopy of HFC-134a at cold temperatures
63rd OSU International Symposium on Molecular Spectroscopy FC01
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Millimeter-wave spectroscopy of formyl azide (HC(O)N3)
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
Indirect Rotational Spectroscopy of HCO+
The n17 band of C2H5D from cm-1
Department of Chemistry, University of Wisconsin, Madison
Molecular Vibrations and IR Spectroscopy
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
The Rotational Spectrum of cis- and trans-HSSOH
New Measurements of the Hyperfine Interactions and Dipole Moment of KI
Vibrational energies for acrylonitrile from
Millimeter-Wave Spectrum of Pyrimidine
Tie-Dyed McMahon Group Members
Molecular Vibrations and IR Spectroscopy
62nd OSU International Symposium on Molecular Spectroscopy WG10
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Microwave Spectroscopy Rotational Spectroscopy
Rigid Diatomic molecule
This is the far infra red spectrum of the diatomic molecule CO
Molecular Vibrations and IR Spectroscopy
How do I get experimental information on bond lengths in simple
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Millimeter-Wave Spectroscopy of Phenyl Isocyanate Cara E. Schwarz, Brent K. Amberger, Benjamin C. Haenni, Brian J. Esselman, R. Claude Woods, and Robert J. McMahon 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison Previous Work Bouchy and Roussy (1977) Kasten and Dreizler (1987) A (MHz) 5202.3 (4) 5202.103 (46) B (MHz) 972.685 (7) 972.68072 (62) C (MHz) 819.623 (8) 819.62766 (61) ΔJ (kHz) 0.068 (4) 0.0689 (11) ΔJK (kHz) -0.208 (30) -0.209 (16) ΔK (kHz) [0] δJ (kHz) 0.015 (5) 0.01210 (77) δK (kHz) n 59 15 σ (MHz) 0.074 0.009 Freq range 8-40 GHz 4.7-8.0 GHz J range 5-21 3-15 Kprolate range 0-10 0-3 A. Bouchy and G. Roussy, Journal of Molecular Spectroscopy. 65 (1977), 395-404. W. Kasten and H. Dreizler, Z. Naturforsch. 42a (1987), 79-82. 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison mm-Wave Spectrum Chosen to test how large of a molecule could be done with our spectrometer Our group is looking at various 6pi electron aromatic molecules Well outside the maximum intensity region of the spectrum High Js as a result, which means distortion constants are very important μa = 2.50 ± 0.02 D μb ≤ 0.2 D 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison aR01 Very dense spectrum, low energy vibrational states Went up to about K40 and saw effects of perturbations 6/22/2015 University of Wisconsin–Madison 5 6 7 8 9 10 11 2 3 1 5 6 4

University of Wisconsin–Madison Ground State A (MHz) 5201.859 (11) B (MHz) 972.68315 (31) C (MHz) 819.62477 (34) DJ (kHz) 0.068490 (10) DJK (kHz) -0.20693 (32) DK (kHz) 3.5052 (89) d1 (kHz) -0.0167059 (46) d2 (kHz) -0.0020304 (22) HJ (Hz) 0.00003115 (25) HJK (Hz) -0.0012043 (90) HKJ (Hz) 0.01663 (23) HK (Hz) [0] h1 (Hz) 0.000011590 (59) h2 (Hz) 0.000001024 (75) h3 (Hz) 0.0000006860 (51) LJ (mHz) -0.0000000106 (24) LJJK (mHz) 0.00000360 (10) LJK (mHz) -0.0001769 (30) LKKJ (mHz) -0.004443 (71) LK (mHz) [0] l1 (mHz) l2 (mHz) 0.00000000801 (76) l3 (mHz) l4 (mHz) n = 3087, σ = 0.049 MHz 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison Ground State Overview Lines up to Kprolate ~ 40 have been confidently assigned Perturbations occur at higher K values Precise determination of rotational constants Quartic, partial sextic and octic centrifugal distortion analysis 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison Vibrational States 2ν36+ν25 – A’ 4ν36 – A’ 2ν25 – A’ 3ν36 – A’’ ν36+ν25 – A’’ ν36 ~ 47 cm-1 A’’ 2ν36 – A’ ν25 – A’ all are very low energy meaning they’re very intense – boltzmann? very close in energy, particularly v25 and 2v36 which are predicted to have nearly identical energies ν25 ~ 95 cm-1 A’ ν36 – A’’ A’ 6/22/2015 University of Wisconsin–Madison CCSD(T)/ANO0

K = 6 K = 11 K = 8 K = 5 K = 4 K = 3 K = 10 K = 2 K = 7 K = 9 K = 1 v36 centered on K0 of the ground state lines are approximately 1600 MHz apart clearly lots of random lines K = 9 K = 1 K = 0

University of Wisconsin–Madison ν36 Bouchy and Roussy Current Work A (MHz) 5144.6(3) B (MHz) 972.788(6) C (MHz) 821.139(6) ΔJ (kHz) 0.071(4) ΔJK (kHz) 0.157(56) ΔK (kHz) [0] δJ (kHz) 0.018(4) n 42 σ (MHz) 0.061 A (MHz) 5144.068 (75) B (MHz) 972.7846 (15) C (MHz) 821.1426 (10) DJ (kHz) 0.070593 (31) DJK (kHz) -0.1550 (14) DK (kHz) -0.49 (17) d1 (kHz) -0.016615 (20) d2 (kHz) -0.001366 (14) HJ (Hz) 0.00002975 (42) HJK (Hz) -0.000619 (70) HKJ (Hz) 0.03018 (80) HK (Hz) -1.30 (13) h1 (Hz) 0.00001434 (31) h2 (Hz) -0.00000067 (53) h3 (Hz) -0.000001218 (47) LJ (mHz) [0] LJJK (mHz) 0.00000681 (71) LJK (mHz) -0.000502 (11) LKKJ (mHz) -0.00452 (24) LK (mHz) l1 (mHz) l2 (mHz) 0.0000000399 (66) l3 (mHz) l4 (mHz) n = 1606, σ = 0.171 MHz 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 v8 LW v25 12/1/2018 University of Wisconsin–Madison

University of Wisconsin–Madison ν25 ~ 95 cm-1 Bouchy and Roussy Current Work A (MHz) 5263.4(5) B (MHz) 972.955(9) C (MHz) 819.495(9) ΔJ (kHz) 0.0716(7) ΔJK (kHz) [0] ΔK (kHz) δJ (kHz) 0.015(6) n 27 σ (MHz) 0.094 A (MHz) 5263.55 (10) B (MHz) 972.9536 (11) C (MHz) 819.49283 (51) DJ (kHz) 0.06343 (69) DJK (kHz) [0] DK (kHz) 52.8 (19) d1 (kHz) -0.01468 (46) d2 (kHz) -0.00327 (11) HJ (Hz) 0.00001559 (17) HJK (Hz) -0.000559 (65) HKJ (Hz) 0.4425 (83) n = 377, σ = 0.055 MHz 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison K = 4 K = 3 K = 2 K = 1 K = 0 2v7 LW 2v36 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison 2ν36 ~ 95 cm-1 Bouchy and Roussy Current Work A (MHz) 5096.5(6) B (MHz) 973.03(1) C (MHz) 822.53(2) ΔJ (kHz) 0.088(19) n 25 σ (MHz) 0.085 A (MHz) 5096.08 (30) B (MHz) 973.0122 (17) C (MHz) 822.5376 (16) DJ (kHz) 0.05803 (10) DJK (kHz) [0] DK (kHz) d1 (kHz) -0.006970 (60) d2 (kHz) 0.0014931 (82) HJ (Hz) 0.00001442 (51) HJK (Hz) -0.005104 (95) n = 291, σ = 0.099 MHz 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison ν25 ~ 95 cm-1 2ν36 ~ 95 cm-1 Both states are predicted to have energies of ~95 wavenumbers Both states are symmetric Initial guess was Fermi resonance… but deltaK isn’t 0 deltaK =2, so F-type Coriolis perturbation 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison K = 4 Obs-Calc for ν25 and 2ν36 ν25 2ν36 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison ν25, 2ν36 Through analyzing the errors in the predictions, we discovered that the perturbations follow ΔK = 2 selection rules. It is expected that ν25 is the lower energy state 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison ν25, 2ν36 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison ν25, 2ν36 peak in the graph is consistently around J ~170 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison 3ν36 mm-Wave experimental data and extrapolation Microwave value 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison K = 1 K = 3 K = 2 K = 0 6/22/2015 University of Wisconsin–Madison

Higher Energy Vibrational States Bouchy and Roussy Current Work 3ν36 A (MHz) 5048 (2) B (MHz) 973.34 (2) C (MHz) 823.87 (2) ΔJ (kHz) 0.069 (15) ΔJK (kHz) [0] ΔK (kHz) δJ (kHz) 0.029(10) n 14 σ (MHz) 0.120 3ν36 ~ 142 cm-1 ν36 + ν25 ~ 142 cm-1 2ν36 + ν25 ~ 190 cm-1 A (MHz) 5013.8 (23) 5205.793 5148.035 B (MHz) 973.218 (22) 971.175 (63) 974.543 (33) C (MHz) 823.7975 (46) 821.1399 (17) 822.1937 (53) DJ (kHz) 0.04785 (85) 0.1496 (43) 0.1135 (17) DJK (kHz) [0] -6.84 (32) -2.49 (12) DK (kHz) d1 (kHz) -0.00112 (53) -0.0544 (21) -0.03734 (90) d2 (kHz) 0.00338 (10) HJ (Hz) 0.0000113 (17) n 242 194 376 σ (MHz) 0.998 0.495 0.635 How the 3v7 ABC were predicted (microwave data wasn’t very useful) Unidentified state from 1977 paper - vx 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison Conclusions Excellent fits for the ground state and ν36 up to Kprolate ~ 40 then the spectrum shows effects of perturbations Perturbations between ν25 and 2ν36 are evident at much lower values of Kprolate Not the result of Fermi resonance as initially expected 2nd order Coriolis resonance (F) 6/22/2015 University of Wisconsin–Madison

University of Wisconsin–Madison Thanks! Research group members: Professor Robert J. McMahon Professor R. Claude Woods – FE01 Dr. Brian Esselman Brent Amberger – FE02 Ben Haenni Stephanie Knezz – RJ13 Nick Walters – FE06 Vanessa Orr Zach Heim Maria Zdanovskaia Matisha Kirkconnell 6/22/2015 University of Wisconsin–Madison