Regulation of Gene Expression

Slides:



Advertisements
Similar presentations
Ch 18 Gene Regulation. Consider: A multicellular organism (Pliny) Do each of his cells have the same genes? Yes, with an exception: germ cells are haploid.
Advertisements

Regulation of Gene Expression
Gene Expression AP Biology.
31 Gene regulation in bacteria. Lecture Outline 11/18/05 Finish up from last time: Transposable elements (“jumping genes”) Gene Regulation in Bacteria.
Genetic Regulatory Mechanisms
Gene Expression Viruses Biotechnology
DNA, AND IN SOME CASES RNA, IS THE PRIMARY SOURCE OF HERITABLE INFORMATION Noneukaryotic Genetic Information.
Chapter 18 Regulation of Gene Expression.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 18.4: Individual bacteria respond to environmental change by regulating.
To understand the concept of the gene function control. To understand the concept of the gene function control. To describe the operon model of prokaryotic.
REGULATION OF GENE EXPRESSION PROKARYOTES 3 LEVELS OF GENE EXPRESSION REGULATION.
Chapter 18 Campbell and Reece
The Chapter 15 Homework is due on Wednesday, February 4 th at 11:59 pm.
Operons. Big picture Prokaryotic control of genome expression Prokaryotic control of genome expression 2 levels of control 2 levels of control  Change.
Bacterial Operons A model of gene expression regulation Ch 18.4.
32 Gene regulation, continued. Lecture Outline 11/21/05 Review the operon concept –Repressible operons (e.g. trp) –Inducible operons (e.g. lac) Positive.
Differential Expression of Genes  Prokaryotes and eukaryotes precisely regulate gene expression in response to environmental conditions  In multicellular.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Anticipatory Questions
Gene Regulation, Part 1 Lecture 15 Fall Metabolic Control in Bacteria Regulate enzymes already present –Feedback Inhibition –Fast response Control.
Chapter 18-Gene Expression
(distal control elements)
Bacteria Gene Regulation. Compare/Contrast Prokaryotic and Eukaryotic Protein Synthesis.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
© 2009 W. H. Freeman and Company
AP Biology Discussion Notes 2/25/2015. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria (Prokaryotes)
CAMPBELL BIOLOGY Reece Urry Cain Wasserman Minorsky Jackson © 2014 Pearson Education, Inc. TENTH EDITION CAMPBELL BIOLOGY Reece Urry Cain Wasserman Minorsky.
Alessandro Raganelli and Varun Rao.  Prokaryotes and eukaryotes alter gene expression in response to their changing environment  In multicellular eukaryotes,
Gene Regulation.
AP Biology Discussion Notes Monday 3/14/2016. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
OPERONS – GENES THAT CODE FOR ENZYMES ON THE SAME PATHWAY ARE REGULATED AS A GROUP.
Regulation of Prokaryotic and Eukaryotic Gene Expression
Control of Gene Expression in Prokaryotes
Chapter 15 Regulation of Gene Expression.
Control of Gene Expression
Figure 18.3 trp operon Promoter Promoter Genes of operon DNA trpR trpE
Differential Expression of Genes
Lac Operon Lactose is a disaccharide used an energy source for bacteria when glucose is not available in environment Catabolism of lactose only takes place.
Gene Regulation … on / off.
Biotechnology Part 2 Genetics of Bacteria
Regulation of Gene Expression
Gene Regulation.
Ch 18: Regulation of Gene Expression
Gene Expression.
Regulation of Gene Expression
Regulation of Gene Expression
DNA Control Mechanisms
Regulation of Gene Expression
Regulation of Gene Expression
Agenda 3/16 Genes Expression Warm Up Prokaryotic Control Lecture
Regulation of Gene Expression
Regulation of Gene Expression
Gene Expression AP Biology.
The Chapter 15 Homework is due Wednesday, January 30 at 11:59 pm.
Chapter 15 Operons.
How are genes turned on & off?
Regulation of Gene Expression
DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY
Biotechnology Part 2 Genetics of Bacteria
DNA Control Mechanisms
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
Chapter 18 Bacterial Regulation of Gene Expression
Review Warm-Up What is the Central Dogma?
Biotechnology Part 2 Genetics of Bacteria
Objective 3: TSWBAT recognize the processes by which bacteria respond to environmental changes by regulating transcription.
DNA Control Mechanisms
Presentation transcript:

Regulation of Gene Expression

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences in cell types RNA molecules play many roles in regulating gene expression in eukaryotes © 2011 Pearson Education, Inc.

Figure 18.1 Figure 18.1 What regulates the precise pattern of gene expression in the developing wing of a fly embryo?

Concept 18.1: Bacteria often respond to environmental change by regulating transcription Natural selection has favored bacteria that produce only the products needed by that cell A cell can regulate the production of enzymes by feedback inhibition or by gene regulation Gene expression in bacteria is controlled by the operon model © 2011 Pearson Education, Inc.

Regulation of gene expression Figure 18.2 Precursor Feedback inhibition trpE gene Enzyme 1 trpD gene Regulation of gene expression Enzyme 2 trpC gene  trpB gene  Figure 18.2 Regulation of a metabolic pathway. Enzyme 3 trpA gene Tryptophan (a) Regulation of enzyme activity (b) Regulation of enzyme production

Operons: The Basic Concept A cluster of functionally related genes can be under coordinated control by a single “on-off switch” The regulatory “switch” is a segment of DNA called an operator usually positioned within the promoter An operon is the entire stretch of DNA that includes the operator, the promoter, and the genes that they control © 2011 Pearson Education, Inc.

The operon can be switched off by a protein repressor The repressor prevents gene transcription by binding to the operator and blocking RNA polymerase The repressor is the product of a separate regulatory gene © 2011 Pearson Education, Inc.

For example, E. coli can synthesize the amino acid tryptophan The repressor can be in an active or inactive form, depending on the presence of other molecules A corepressor is a molecule that cooperates with a repressor protein to switch an operon off For example, E. coli can synthesize the amino acid tryptophan © 2011 Pearson Education, Inc.

By default the trp operon is on and the genes for tryptophan synthesis are transcribed When tryptophan is present, it binds to the trp repressor protein, which turns the operon off The repressor is active only in the presence of its corepressor tryptophan; thus the trp operon is turned off (repressed) if tryptophan levels are high © 2011 Pearson Education, Inc.

Figure 18.3 trp operon Promoter Promoter Genes of operon DNA trpR trpE trpD trpC trpB trpA Operator Regulatory gene RNA polymerase Start codon Stop codon 3 mRNA 5 mRNA 5 E D C B A Protein Inactive repressor Polypeptide subunits that make up enzymes for tryptophan synthesis (a) Tryptophan absent, repressor inactive, operon on DNA No RNA made Figure 18.3 The trp operon in E. coli: regulated synthesis of repressible enzymes. mRNA Protein Active repressor Tryptophan (corepressor) (b) Tryptophan present, repressor active, operon off

Polypeptide subunits that make up enzymes for tryptophan synthesis Figure 18.3a trp operon Promoter Promoter Genes of operon DNA trpR trpE trpD trpC trpB trpA Operator Regulatory gene RNA polymerase Start codon Stop codon 3 mRNA 5 mRNA 5 E D C B A Protein Inactive repressor Figure 18.3 The trp operon in E. coli: regulated synthesis of repressible enzymes. Polypeptide subunits that make up enzymes for tryptophan synthesis (a) Tryptophan absent, repressor inactive, operon on

Tryptophan (corepressor) Figure 18.3b-1 DNA mRNA Protein Active repressor Figure 18.3 The trp operon in E. coli: regulated synthesis of repressible enzymes. Tryptophan (corepressor) (b) Tryptophan present, repressor active, operon off

Tryptophan (corepressor) Figure 18.3b-2 DNA No RNA made mRNA Protein Active repressor Figure 18.3 The trp operon in E. coli: regulated synthesis of repressible enzymes. Tryptophan (corepressor) (b) Tryptophan present, repressor active, operon off

Repressible and Inducible Operons: Two Types of Negative Gene Regulation A repressible operon is one that is usually on; binding of a repressor to the operator shuts off transcription The trp operon is a repressible operon An inducible operon is one that is usually off; a molecule called an inducer inactivates the repressor and turns on transcription © 2011 Pearson Education, Inc.

By itself, the lac repressor is active and switches the lac operon off The lac operon is an inducible operon and contains genes that code for enzymes used in the hydrolysis and metabolism of lactose By itself, the lac repressor is active and switches the lac operon off A molecule called an inducer inactivates the repressor to turn the lac operon on © 2011 Pearson Education, Inc.

Figure 18.4 Regulatory gene Promoter Operator DNA DNA lacI lacZ No RNA made 3 mRNA RNA polymerase 5 Active repressor Protein (a) Lactose absent, repressor active, operon off lac operon DNA lacI lacZ lacY lacA RNA polymerase Figure 18.4 The lac operon in E. coli: regulated synthesis of inducible enzymes. 3 mRNA mRNA 5 5 Protein -Galactosidase Permease Transacetylase Allolactose (inducer) Inactive repressor (b) Lactose present, repressor inactive, operon on

(a) Lactose absent, repressor active, operon off Figure 18.4a Regulatory gene Promoter Operator DNA DNA lacI lacZ No RNA made 3 mRNA RNA polymerase 5 Figure 18.4 The lac operon in E. coli: regulated synthesis of inducible enzymes. Active repressor Protein (a) Lactose absent, repressor active, operon off

Allolactose (inducer) Figure 18.4b lac operon DNA lacI lacZ lacY lacA RNA polymerase 3 mRNA mRNA 5 5 -Galactosidase Permease Transacetylase Protein Figure 18.4 The lac operon in E. coli: regulated synthesis of inducible enzymes. Inactive repressor Allolactose (inducer) (b) Lactose present, repressor inactive, operon on

Inducible enzymes usually function in catabolic pathways; their synthesis is induced by a chemical signal Repressible enzymes usually function in anabolic pathways; their synthesis is repressed by high levels of the end product Regulation of the trp and lac operons involves negative control of genes because operons are switched off by the active form of the repressor © 2011 Pearson Education, Inc.

Positive Gene Regulation Some operons are also subject to positive control through a stimulatory protein, such as catabolite activator protein (CAP), an activator of transcription When glucose (a preferred food source of E. coli) is scarce, CAP is activated by binding with cyclic AMP (cAMP) Activated CAP attaches to the promoter of the lac operon and increases the affinity of RNA polymerase, thus accelerating transcription © 2011 Pearson Education, Inc.

When glucose levels increase, CAP detaches from the lac operon, and transcription returns to a normal rate CAP helps regulate other operons that encode enzymes used in catabolic pathways © 2011 Pearson Education, Inc.

RNA polymerase binds and transcribes Operator Figure 18.5 Promoter DNA lacI lacZ CAP-binding site RNA polymerase binds and transcribes Operator Active CAP cAMP Inactive lac repressor Inactive CAP Allolactose (a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized Promoter DNA lacI lacZ Figure 18.5 Positive control of the lac operon by catabolite activator protein (CAP). CAP-binding site Operator RNA polymerase less likely to bind Inactive CAP Inactive lac repressor (b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized

RNA polymerase binds and transcribes Operator Figure 18.5a Promoter DNA lacI lacZ CAP-binding site RNA polymerase binds and transcribes Operator Active CAP cAMP Figure 18.5 Positive control of the lac operon by catabolite activator protein (CAP). Inactive lac repressor Inactive CAP Allolactose (a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized

RNA polymerase less likely to bind Figure 18.5b Promoter DNA lacI lacZ Operator CAP-binding site RNA polymerase less likely to bind Inactive CAP Inactive lac repressor Figure 18.5 Positive control of the lac operon by catabolite activator protein (CAP). (b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized