Ffwythiant Dosraniad Cronnus F(x)

Slides:



Advertisements
Similar presentations
The Normal Distribution
Advertisements

E(X 2 ) = Var (X) = E(X 2 ) – [E(X)] 2 E(X) = The Mean and Variance of a Continuous Random Variable In order to calculate the mean or expected value of.
Probability Theory STAT 312 STAT 312 Dr. Zakeia AlSaiary.
Today Today: Chapter 5 Reading: –Chapter 5 (not 5.12) –Suggested problems: 5.1, 5.2, 5.3, 5.15, 5.25, 5.33, 5.38, 5.47, 5.53, 5.62.
Samples vs. Distributions Distributions: Discrete Random Variable Distributions: Continuous Random Variable Another Situation: Sample of Data.
Lesson #15 The Normal Distribution. For a truly continuous random variable, P(X = c) = 0 for any value, c. Thus, we define probabilities only on intervals.
CONTINUOUS RANDOM VARIABLES. Continuous random variables have values in a “continuum” of real numbers Examples -- X = How far you will hit a golf ball.
Stat 321 – Day 15 More famous continuous random variables “All models are wrong; some are useful” -- G.E.P. Box.
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved. Essentials of Business Statistics: Communicating with Numbers By Sanjiv Jaggia and.
LECTURE UNIT 4.3 Normal Random Variables and Normal Probability Distributions.
Starter The probability distribution of a discrete random variable X is given by: P(X = r) = 30kr for r = 3, 5, 7 P(X = r) = 0 otherwise What is the value.
Y Dosraniad Binomial Profion Bernoulli - Bernoulli Trials Profion sydd â dim ond 2 ganlyniad posibl. A Bernoulli trial is a random experiment with only.
Probability & Statistics I IE 254 Summer 1999 Chapter 4  Continuous Random Variables  What is the difference between a discrete & a continuous R.V.?
Chapter 7 Lesson 7.3 Random Variables and Probability Distributions 7.3 Probability Distributions for Continuous Random Variables.
The Median of a Continuous Distribution
Canolrif Dosraniad Di-or I ddarganfod canolrif hapnewidyn gyda dosraniad di-dor, rydym yn defnyddio’r ffwythiant dosraniad cronnus F(x). Mae’r tebygolrwydd.
1 Continuous Probability Distributions Continuous Random Variables & Probability Distributions Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.
§ 5.3 Normal Distributions: Finding Values. Probability and Normal Distributions If a random variable, x, is normally distributed, you can find the probability.
Chapter 3 Discrete Random Variables and Probability Distributions  Random Variables.2 - Probability Distributions for Discrete Random Variables.3.
Continuous Random Variables. Probability Density Function When plotted, discrete random variables (categories) form “bars” A bar represents the # of.
Chapter 3 Discrete Random Variables and Probability Distributions  Random Variables.2 - Probability Distributions for Discrete Random Variables.3.
2.Find the turning point of the function given in question 1.
Section 10.5 Let X be any random variable with (finite) mean  and (finite) variance  2. We shall assume X is a continuous type random variable with p.d.f.
CHAPTER Discrete Models  G eneral distributions  C lassical: Binomial, Poisson, etc Continuous Models  G eneral distributions 
1 1 Slide Continuous Probability Distributions n The Uniform Distribution  a b   n The Normal Distribution n The Exponential Distribution.
Warm-up 1. A concert hall has 2000 seats. There are 1200 seats on the main floor and 800 in the balcony. 40% of those in the balcony buy a souvenir program.
Cymedr ac Amrywiant Hapnewinynau Di-dor Er mwyn darganfod beth yw cymedr neu gwerth disgwyliedig hapnewidyn di-dor, rhaid i ni luosi’r ffwythiant dwysedd.
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 3 Random Variables and Probability Distributions.
Lecture 21 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.
11.3 CONTINUOUS RANDOM VARIABLES. Objectives: (a) Understand probability density functions (b) Solve problems related to probability density function.
Y dosraniad Poisson fel brasamcan i’r Binomial. Pan mae’r nifer y treialon mewn dosraniad Binomial yn fawr iawn, a’r tebygolrwydd i lwyddo yn fach iawn,
4.3 Probability Distributions of Continuous Random Variables: For any continuous r. v. X, there exists a function f(x), called the density function of.
Edrych ar y sêr. 2 Y Dechreuad © The Collective Worship Resource - The National Society and The Culham Institute.
Cumulative Distribution Function
Random Variable 2013.
MTH 161: Introduction To Statistics
4.3 Probability Distributions of Continuous Random Variables:
Continuous Random Variables
The distribution function F(x)
Chapter 4 Continuous Random Variables and Probability Distributions
Y Dosraniad Poisson The Poisson Distribution
Geometreg Cyfesurynnau Cartesaidd
Probability Review for Financial Engineers
x1 p(x1) x2 p(x2) x3 p(x3) POPULATION x p(x) ⋮ Total 1 “Density”
The Normal Probability Distribution Summary
Ffwythiannau Cyfansawdd a Gwrthdro
Writing a Plan Amcanion Dysgu:
Logarithmau 2 Logarithms /adolygumathemateg.
Exponential Probabilities
4.3 Probability Distributions of Continuous Random Variables:
Trafodwch y penawdau hyn a chasglwch rai eich hun
Mathau o Gyfresi Types of /adolygumathemateg.
... DISCRETE random variables X, Y Joint Probability Mass Function y1
The Distance to the Horizon
Calculating probabilities for a normal distribution
Logarithmau 3 Logarithms /adolygumathemateg.
Ymholiad Gwaith Maes TGAU
Vital Statistics Probability and Statistics for Economics and Business
Strwythur y prosiect Bwrdd Newid LlC Bwrdd Cyflawni Gweithredol LlC
ASV Chapters 1 - Sample Spaces and Probabilities
The Geometric Distributions
Fectorau /adolygumathemateg.
Cyfres Geometrig Geometric /adolygumathemateg.
Gwerthoedd Arbennig Sin, Cos a Tan
Mae blwch chwilio syml tebyg i un Google ar y dudalen gartref sy'n eich galluogi i chwilio am eiriau o fewn testun erthygl, a bydd y gosodiadau diofyn.
PROBABILITY AND STATISTICS
Uniform Probability Distribution
Prosiect Sgiliau Hanfodol Hyblyg
Empirical Distributions
Presentation transcript:

Ffwythiant Dosraniad Cronnus F(x) 4.3 Ffwythiant Dosraniad Cronnus F(x) Cumulative Distribution Function F(x) Mae’n bosib hefyd defnyddio Ffwythiant Dosraniad Cronnus ar gyfer darganfod tebygolrwydd. It is also possible to use the cumulative probability function to calculate probability. a b F(x) x 1 F(x) = P(X ≤ x) ar gyfer pob x. F(x) = P(X ≤ x) for all x. Mae’r tebygolrwydd yn 0 ar gyfer unrhyw werth o dan a ac yn 1 ar gyfer unrhyw werth dros b. The probability is 0 for any value under a, and 1 for any value over b. F(x) = 0, ar gyfer/for x < a F(b) = 1, ar gyfer/for x > b

I ddarganfod P(x ≤ c) P(x ≤ c) = F(c) I ddarganfod P(c ≤ x ≤ d) To find P(x ≤ c) F(x) P(x ≤ c) = F(c) c x a b a b F(x) x I ddarganfod P(c ≤ x ≤ d) To find P(c ≤ x ≤ d) P(c ≤ x ≤ d) = F(d) – F(c) d c

F(x) = 0 ar gyfer/for x < 1 F(x) = ar gyfer/for 1 ≤ x ≤ 3 Enghraifft - Example Dosrennir yr hapnewidyn di-dor X gyda ffwythiant dosraniad cronnus F a roddir gan F(x) = 0 ar gyfer/for x < 1 F(x) = ar gyfer/for 1 ≤ x ≤ 3 F(x) = 1 ar gyfer/for x > 3 Darganfyddwch Find P(X < 2) P(X > 1½) P(1½ < X ≤ 2½) The continuous random variable X is distributed with cumulative distribution function F where

P(X < 2) = F(2) = b) P(X > 1½) = 1 – F(1½) = c) P(1½ < X ≤ 2½) = F(2½) - F(1½)

Newid Ffwythiant Dwysedd Tebygolrwydd f(x) i Ffwythiant Dosraniad Cronnus F(x) Change Probability Density Function f(x) to Cumulative Distribution Function F(x) f(x)  F(x) Gan fod F(x) = P(X ≤x), i newid o f(x) i F(x) rydym yn integru rhwng y terfan isaf ac x. Since F(x) = P(X ≤x), in order to change f(x) to F(x) we must integrate between the lower limit and x. ar gyfer/for 0 ≤ x ≤ 4

F(x) = 0 ar gyfer/for x < 0 F(x) = ar gyfer/for 0 ≤ x ≤ 4 Ymarfer Ffwythiant Dosraniad Cronnus Cumulative Distribution Function Exercise