Prochaines Etapes des Capteurs CMOS Christine Hu-Guo (IPHC)

Slides:



Advertisements
Similar presentations
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Advertisements

6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
A High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group Outline.
MAPS for Particles Physics Christine Hu-Guo (IPHC) PHASE1 – STAR IPHC.
FSBB-M and FSBB-A: Two Large Scale CMOS Pixel Sensors Building Blocks Developed for the Upgrade of the Inner Tracking System of the ALICE Experiment Frédéric.
CMOS sensors: a short introduction. 1.What’s a CMOS sensor? A new technique for pixel detectors.
EUDET Annual Meeting, Munich, October EUDET Beam Telescope: status of sensor’s PCBs Wojciech Dulinski on behalf.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Irfu saclay Achievements & Perspectives of MIMOSA Sensors (MAPS) for Vertexing Applications Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg) & IRFU.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments On behalf of IPHC-Strasbourg group (CNRS & Université.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
FEE-2011, Bergamo University 1 Novel packaging methods for ultra-thin monolithic sensors ladders construction Wojciech.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
Mistral Christine Hu-Guo on behalf of the IPHC (Strasbourg) PICSEL team Outline  MISTRAL (inner layers)  Circuit proposal  Work plan  Sensor variant.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
Monolithic Pixel R&D at LBNL M Battaglia UC Berkeley - LBNL Universite' Claude Bernard – IPN Lyon Monolithic Pixel Meeting CERN, November 25, 2008 An R&D.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
MAPS for ALICE Upgrade and Beyond Frédéric Morel (on behalf of PICSEL and ALICE teams of IPHC Strasbourg) Outline  Starting point: STAR-PXL  MISTRAL.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
3D CMOS monolithic 3-bit resolution pixel sensor with fast digital pipelined readout Olav Torheim, Yunan Fu, Christine Hu-Guo, Yann Hu, Marc Winter.
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
10-12 April 2013, INFN-LNF, Frascati, Italy
Silicon eyes for radio-labeled biological samples
Min FU (co-PhD student of IPHC, Strasbourg, France
Technical Design for the Mu3e Detector
CMOS pixel sensors & PLUME operation principles
Overall sensor architecture designs achieved Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg) Targeting.
A 12 µm pixel pitch 3D MAPS with delayed and full serial readout for the innermost layer of ILC vertex detector Yunan Fu (on behalf of the CMOS Sensor.
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
1IPHC Strasbourg, France, 2CERN, Geneve, Suisse
The SuperB Silicon Vertex Tracker
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
CMOS Pixel Sensors for ILC Related Vertexing & Tracking Devices Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg) Contents Overview.
SCIENTIFIC CMOS PIXELS
FPCCD Vertex Detector for ILC
SVT detector electronics
R&D of CMOS pixel Shandong University
3D electronic activities at IN2P3
Presentation transcript:

Prochaines Etapes des Capteurs CMOS Christine Hu-Guo (IPHC) PHASE1 – STAR IPHC

Trends for Pixel Sensor Development CCD (Charge Coupled Device) Future subatomic physics experiments need detectors  beyond the state of the art MAPS provide an attractive trade-off between granularity, material budget, readout speed, radiation tolerance and power dissipation Power consumption Limited for all experiments 3T pixel Analogue RO MAPS MAPS Development Trend Digital RO MAPS 3DIT High resistivity EPI 2D & 3D MAPS Hybrid Pixel Detector 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

Development of MAPS for Charged Particle Tracking In 1999, the IPHC CMOS sensor group proposed the first CMOS pixel sensor (MAPS) for future vertex detectors (ILC) Numerous other applications of MAPS have emerged since then ~10-15 HEP groups in the USA & Europe are presently active in MAPS R&D Original aspect: integrated sensitive volume (EPI layer) and front-end readout electronics on the same substrate Charge created in EPI, excess carriers propagate thermally, collected by NWELL/PEPI , with help of reflection on boundaries with P-well and substrate (high doping) Q = 80 e-h / µm  signal < 1000 e- Compact, flexible EPI layer ~10–15 µm thick thinning to ~30–40 µm permitted Standard fabrication technology Cheap, fast turn-around Room temperature operation Attractive balance between granularity, material budget, radiation tolerance, read out speed and power dissipation BUT Very thin sensitive volume  impact on signal magnitude (mV!) Sensitive volume almost un-depleted  impact on radiation tolerance & speed Commercial fabrication (parameters)  impact on sensing performances & radiation tolerance NWELL used for charge collection  restricted use of PMOS transistors R.T. 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

Progress on MAPS' Development 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

Milestone of the Development 2009, an important year for CMOS pixel sensors' R&D: MIMOSA26 (Collaboration IRFU-IPHC) has been designed, fabricated and tested within the EUDET program MIMOSA26: a reticule size MAPS for the beam telescope EUDET Pixel array: 1152 x 576, 18.4 µm pitch Binary output, 10 k images / s Architecture: Pixel (Amp+CDS) array organised in // columns r.o. in the rolling shutter mode 1152 ADC, a 1-bit ADC (discriminator) / column Integrated zero suppression logic Remote and programmable Lab. and beam tests: 62 chips tested, yield ~75-90% ULTIMATE: final sensor for STAR detector upgrade Submission Oct. 2010  See I. Valin's talk 2D MAPS have reached necessary prototyping maturity for real scale applications : Beam telescopes allowing for sp ~ 2 μm & 106 particles/cm2/s (Beam results 06/2010) Vertex detectors requiring high resolution & very low material budget 21.5 mm 13.7 mm MIMOSA26 Active area: ~10.6 x 21.2 mm2 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

MAPS: A Long Term R&D Main objective: ILC, with staggered performances MAPS applied to other experiments with intermediate requirements EUDET 2007/2009 Beam Telescope EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) CBM (Heavy Ion physics) ILC (Particle physics) HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) EIC (Hadronic physics) CLIC (Particle physics) SuperB (Particle physics) … STAR 2012 Solenoidal Tracker at RHIC ILC >2020 Internatinal Linear Collider CBM 2016 Compressed Baryonic Matter  Spinoff: Interdisciplinary Applications, biomedical, space … 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

Prototype R&D  Real Scale Detector R&D 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

R&D Directions (1) Large surface detector  minimize dead zone AIDA, CBM, EIC, biomedical imaging Surface > reticle size (~2x2 cm²) Stitching technique Technologies: XFAB 0.35 µm Tower 0.18 µm Problems: Process: yield / wafer Electronics: cap vs RO speed 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

R&D Directions (2) PLUME (Pixelated Ladder with Ultra-low Material Embedding) Project Study a double-sided detector ladder motivated by the R&D for the ILD vertex detector at ILC Material budget <~0.3%XO Mechanical investigation Electrical investigation EMC : Electro-Magnetic Compatibility Power pulsing Data transmission (few Gbit/ladder) Optical link? SERWIETE (SEnsor Raw Wrapped In an Extra Thin Envelope) Project Motivated by HadronPhysics2, FP7 Sensor assembly mounted on flex and wrapped in  polymerised film with <0.15 % Xo for 1 unsupported  layer (sensors – flex cable – film) to evaluate the possibility of mounting a supportless  ladder on a cylindrical surface like a beam pipe (used  as mechanical support). Proof of principle expected in 2012  Collaboration with IMEC Fully functional microprocessor chip in flexible plastic envelope. Courtesy of Piet De Moor, IMEC company, Belgium 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

R&D Directions (3): R&D on Microelectronics Design Requests by projects in real conditions: Pixel design: Advanced processes: High resistivity EPI layer (thickness, R) Pitch, size  Optimisation: Charge collection efficiency Resolution Radiation hardness Common submission IRFU-IPHC Elongated pixel Matrix for resolution Matrix for time stamp 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

R&D Directions (3): R&D on Microelectronics Design Requests by projects in real conditions: Pixel design Integration ADC with pixel array  see F. Morel's talk 3D-MAPS  see O. Torheim's talk Intelligent data processing blocks (DSP in chip?) Cluster reconstruction (track position) Data compression SEU, SEL free circuit, ex. memory Slow control & Data acquisition system  see C. Santos's talk Power supply block  power management? Data transmission  optical trans-receiver Club 0.35/0.13 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr

Conclusion After 10 year, 2D-MAPS R&D reaches its maturity for real scale applications R&D continues: new performance scale accessible with emergent CMOS fabrication technology allowing to fully exploit the potential of MAPS approach CBM, ALICE/LHC, EIC, CLIC, SuperB, …  System integration (PLUME , SERWIETE) + Intelligent data processing + data transmission Mediate & long term objective: 3D sensors mainly motivated by RO < few µs Ultimately: expect to become the best performing pixel technology ever …? 22-24/06/2010 Journées VLSI IN2P3 IPHC christine.hu@ires.in2p3.fr