7.1 – Basic Trigonometric Identities and Equations

Slides:



Advertisements
Similar presentations
An identity is an equation that is true for all defined values of a variable. We are going to use the identities that we have already established and establish.
Advertisements

Unit 8: Modeling with Trigonometric Functions
7.1 – Basic Trigonometric Identities and Equations
6.3 – Trig Identities.
11. Basic Trigonometric Identities. An identity is an equation that is true for all defined values of a variable. We are going to use the identities to.
Ch 7 – Trigonometric Identities and Equations 7.1 – Basic Trig Identities.
Trigonometric Identities
Chapter 6 Trig 1060.
5-2 Reciprocal Ratios.
Quadrant 4 Name that Quadrant…
November 5, 2012 Using Fundamental Identities
Trigonometric Identities 14-3
While you wait: For a-d: use a calculator to evaluate:
Vocabulary identity trigonometric identity cofunction odd-even identities BELLRINGER: Define each word in your notebook.
1 Lesson 33 - Trigonometric Identities Pre-Calculus.
Trigonometry Section 8.4 Simplify trigonometric expressions Reciprocal Relationships sin Θ = cos Θ = tan Θ = csc Θ = sec Θ = cot Θ = Ratio Relationships.
1 Lesson 22 - Trigonometric Identities IB Math HL 6/12/2016HL Math - Santowski.
Remember an identity is an equation that is true for all defined values of a variable. We are going to use the identities that we have already established.
Holt McDougal Algebra 2 Fundamental Trigonometric Identities Fundamental Trigonometric Identities Holt Algebra 2Holt McDougal Algebra 2.
Bell Work R Find the 6 trig functions for
Do Now  .
(x, y) (- x, y) (- x, - y) (x, - y).
Trig. Identities Review
Pre-calc w-up 2/16 2. Simplify cos2 x tan2 x + cos2x
Warm Up For a-d: use a calculator to evaluate:
6.1A Reciprocal, Quotient, and Pythagorean Identities
TRIGONOMETRIC IDENTITIES
Chapter 5 Trigonometric Identities Objective:
Section 5.1 Trigonometric Identities
Ch. 4 – Trigonometric Functions
Simplifying Trig. Identities
Using Fundamental Identities
Basic Trigonometric Identities
Section 6.1 Verifying Trigonometric Identities
Section 5.1 Verifying Trigonometric Identities
Trigonometry Identities and Equations
9.1: Identities and Proofs
Objective Use fundamental trigonometric identities to simplify and rewrite expressions and to verify other identities.
Ch 5.2.
Section 5.1: Fundamental Identities
Lesson 6.5/9.1 Identities & Proofs
Basic Trigonometric Identities and Equations
7.1 – Basic Trigonometric Identities and Equations
MATH 1330 Section 5.1.
Lesson 5.1 Using Fundamental Identities
Fundamental Trigonometric Identities Essential Questions
Ch 7 – Trigonometric Identities and Equations
Basic Trigonometric Identities and Equations
17. Basic Trigonometric Identities
Trigonometric Identities.
Pythagorean Identities
One way to use identities is to simplify expressions involving trigonometric functions. Often a good strategy for doing this is to write all trig functions.
Pyrhagorean Identities
Basic Trigonometric Identities and Equations
Trigonometric Identities
Using Fundamental Identities
Fundamental Trig Identities
18. MORE on TRIG IDENTITIES
Basic Trigonometric Identities and Equations
5.1(a) Notes: Using Fundamental Identities
The Fundamental Identities
Copyright © Cengage Learning. All rights reserved.
Warm-up: (put at top of today’s assignment p.336)
Trigonometric Identities 11-3
The Fundamental Identities
7.1 – Basic Trigonometric Identities and Equations
Basic Trigonometric Identities and Equations
12. MORE on TRIG IDENTITIES
WArmup Rewrite 240° in radians..
Presentation transcript:

7.1 – Basic Trigonometric Identities and Equations

Trigonometric Identities Quotient Identities Reciprocal Identities Pythagorean Identities sin2q + cos2q = 1 tan2q + 1 = sec2q cot2q + 1 = csc2q sin2q = 1 - cos2q tan2q = sec2q - 1 cot2q = csc2q - 1 cos2q = 1 - sin2q 5.4.3

Do you remember the Unit Circle? Where did our pythagorean identities come from?? Do you remember the Unit Circle? What is the equation for the unit circle? x2 + y2 = 1 What does x = ? What does y = ? (in terms of trig functions) sin2θ + cos2θ = 1 Pythagorean Identity!

Take the Pythagorean Identity and discover a new one! Hint: Try dividing everything by cos2θ sin2θ + cos2θ = 1 . cos2θ cos2θ cos2θ tan2θ + 1 = sec2θ Quotient Identity Reciprocal Identity another Pythagorean Identity

Take the Pythagorean Identity and discover a new one! Hint: Try dividing everything by sin2θ sin2θ + cos2θ = 1 . sin2θ sin2θ sin2θ 1 + cot2θ = csc2θ Quotient Identity Reciprocal Identity a third Pythagorean Identity

Using the identities you now know, find the trig value. 1.) If cosθ = 3/4, find secθ 2.) If cosθ = 3/5, find cscθ.

3.) sinθ = -1/3, find tanθ 4.) secθ = -7/5, find sinθ

REMEMBER…. TO NUMBER EACH STEP WRITE CLEARLY GO ALL THE WAY TO ONE TRIG VALUE (DON’T LEAVE TAN2X, LEAVE TANX)

Simplifying Trigonometric Expressions Identities can be used to simplify trigonometric expressions. Simplify. b) a) 5.4.5

Simplifing Trigonometric Expressions c) (1 + tan x)2 - 2 sin x sec x d)

Simplify each expression.

Simplifying trig Identity Example1: simplify tanxcosx sin x cos x tanx cosx tanxcosx = sin x

Simplifying trig Identity sec x csc x Example2: simplify 1 cos x 1 cos x sinx = x sec x csc x 1 sin x = sin x cos x = tan x

Simplifying trig Identity cos2x - sin2x cos x Example2: simplify = sec x cos2x - sin2x cos x cos2x - sin2x 1

Example Simplify: = cot x (csc2 x - 1) Factor out cot x = cot x (cot2 x) Use pythagorean identity = cot3 x Simplify

Example Simplify: = sin x (sin x) + cos x Use quotient identity cos x Simplify fraction with LCD = sin2 x + (cos x) cos x = sin2 x + cos2x cos x Simplify numerator = 1 cos x Use pythagorean identity = sec x Use reciprocal identity

Your Turn! Combine fraction Simplify the numerator Use pythagorean identity Use Reciprocal Identity

Practice 1 cos2θ cosθ sin2θ cos2θ secθ-cosθ csc2θ cotθ tan2θ

One way to use identities is to simplify expressions involving trigonometric functions. Often a good strategy for doing this is to write all trig functions in terms of sines and cosines and then simplify. Let’s see an example of this: substitute using each identity simplify

Another way to use identities is to write one function in terms of another function. Let’s see an example of this: This expression involves both sine and cosine. The Fundamental Identity makes a connection between sine and cosine so we can use that and solve for cosine squared and substitute.

(E) Examples Prove tan(x) cos(x) = sin(x)

(E) Examples Prove tan2(x) = sin2(x) cos-2(x)

(E) Examples Prove

(E) Examples Prove