Warm Up – 1/23 - Thursday How many people voted in the election?

Slides:



Advertisements
Similar presentations
Which units are you most interested in covering? Unit A –Management Science Unit B – Growth Unit C – Shape and Form Unit D – Statistics.
Advertisements

Mark Wang John Sturm Sanjeev Kulkarni Paul Cuff.  Basic Background – What is the problem?  Condorcet = IIA  Survey Data  Pairwise Boundaries = No.
Chapter 1: Methods of Voting
Mathematics The study of symbols, shapes, algorithms, sets, and patterns, using logical reasoning and quantitative calculation. Quantitative Reasoning:
VOTING SYSTEMS Section 2.5.
MAT 105 Spring  There are many more methods for determining the winner of an election with more than two candidates  We will only discuss a few.
Excursions in Modern Mathematics Sixth Edition
MAT 105 Spring  As we have discussed, when there are only two candidates in an election, deciding the winner is easy  May’s Theorem states that.
1.1, 1.2 Ballots and Plurality Method
Voting Review Material
CRITERIA FOR A FAIR ELECTION
1.3 The Borda Count Method. The Borda Count Method In an election of N candidates, give 1 point for the last place, 2 points for the second from last.
1 The Process of Computing Election Victories Computational Sociology: Social Choice and Voting Methods CS110: Introduction to Computer Science – Lab Module.
Section 1.1, Slide 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 11.2, Slide 1 11 Voting Using Mathematics to Make Choices.
MAT 105 Spring  We have studied the plurality and Condorcet methods so far  In this method, once again voters will be allowed to express their.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Section 2 - Slide Election Theory Flaws of Voting.
May 19, 2010Math 132: Foundations of Mathematics 12.5 Homework Solutions 27. (a) 28. (b) 29. (d) 30. (e) 53. Positive Correlation, Weak 54. Negative Correlation,
Ch Voting Preference tables E, F, G, and H are running for math club president If everyone is asked to rank their preferences, how many different.
The Mathematics of Voting Chapter 1. Voting theory: application of methods that affect the outcome of an election. Sec 1: Preference Ballots and Schedules.
Chapter 12 sec 1. Def. Each person votes for his or her favorite candidate. The candidate receiving the most votes is declared the winner.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 14 Voting and Apportionment.
Chapter 15 Section 1 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting 1.1Preference Ballots and Preference.
Voting Methods Examples of Voting Methods (other than majority rules) –Plurality –Borda Count –Hare System –Sequential Pairwise –Approval Voting.
Section 1.1, Slide 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 11.1, Slide 1 11 Voting Using Mathematics to Make Choices.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.1 Voting Methods.
Voting Tie Breakers. With each method described – plurality method, Borda count method, plurality with elimination method, and pairwise comparison method.
1.6 Rankings. Sometimes, we are not just interested in the first place winner of the election, but also want to know who comes in second, third … There.
VOTING PARADOXES AND HOW TO DEAL WITH THEM Hannu Nurmi University of Turku Turku, Finland.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Section 1 - Slide Election Theory Voting Methods.
Warm-Up Rank the following soft drinks according to your preference (1 being the soft drink you like best and 4 being the one you like least)  Dr. Pepper.
Voting Methods Introduction.
The Mathematics of Voting Chapter 1. Preference Ballot A Ballot in which the voters are asked to rank the candidates in order of preference. 1. Brownies.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.2 Flaws of Voting.
Fairness Criteria Fairness Criteria: properties we expect a good voting system to satisfy.Fairness Criteria: properties we expect a good voting system.
Voting System Review Borda – Sequential Run-Off – Run-Off –
My guy lost? What’s up with that….  In the 1950’s, Kenneth Arrow, a mathematical economist, proved that a method for determining election results that.
1.
1 The Process of Computing Election Victories Computational Sociology: Social Choice and Voting Methods CS110: Introduction to Computer Science – Lab Module.
Voting: Does the Majority Always Rule?
Voting and Apportionment
Voting and Apportionment
Plurality and Borda Count Method
1 The Mathematics of Voting
1.
Plurality with elimination, Runoff method, Condorcet criterion
Chapter 10: The Manipulability of Voting Systems Lesson Plan
1.5 Weighted Voting and Voting Power
8.2 Voting Possibilities and Fairness Criteria
1.3 The Borda Count Method.
Elections with More Than Two Candidates
Let’s say we have a town of 10,000 people electing a mayor using the Plurality with Elimination Voting Method. There are 4 candidates, candidate A, candidate.
Election #1 Popular Vote Electoral Vote State Red Yellow
Warm Up – 5/27 - Monday How many people voted in the election?
Social Choice Theory [Election Theory]
Classwork: p.33 (27abc run off, 29ab run off, 31, 33ab run off)
Section 15.2 Flaws of Voting
5-2 Election Theory Flaws of Voting.
Voting systems Chi-Kwong Li.
Voting Preference Ballots and Preference Schedules
Which type of Voting Scheme would you vote for?
MAT 105 Fall 2008 More Voting Methods.
p.33 (28 run off, 30 run off, 32, 34ab run off)
Warm Up – 1/27 - Monday Who wins by Plurality with Elimination?
Voting Methods Introduction.
Voting Pairwise Comparison.
Quiz – 1/24 - Friday How many people voted in the election?
Section 14.1 Voting Methods.
Flaws of the Voting Methods
Voting Fairness.
Presentation transcript:

Warm Up – 1/23 - Thursday How many people voted in the election? Using the Plurality Method, who wins the election? Who wins the election using the Borda Count Method?

Examples Plurality: Most government elections… Borda Count: Sports Rankings/Awards

Example #1 How many voters are there? How many votes would be Needed for a majority (50%)? Does anyone have 50% or more of the vote?

Example #1 Who has the least number of first place votes? How many first place votes Does each candidate have Now? Does any candidate Have a majority?

Plurality with Elimination

Condorcet Candidates A Condorcet Candidate is a candidate who would win an a pairwise comparison against all other candidates. Condorcet Candidates always win elections when using the method of pairwise comparisons.