ENJIN PEMBAKARAN DALAM (INTERNAL COMBUSTION ENGINE)

Slides:



Advertisements
Similar presentations
Engine Operating Principles
Advertisements

Systems Review 1 ATC Chapter 4.
Four Stroke Gas Engines
Types of Engines and Uses
ME240/107S: Engine Dissection
STUDENT NAME: (1) Patel Vidhi A.
HOW THE ENGINE WORKS RK.
INTERNAL COMBUSTION ENGINES
Presented by :- Deepak ranjan swain Regd no: Mechanical.
Principles of the Compression Engine
Internal Combustion Engines – The Diesel
Small Engines.
Engines Internal combustion engine needs
Internal combustion engine
4 Stroke engine Stroke is defined as the movement of the piston from the 'bottom dead center' (BDC) to the 'top dead center' (TDC) or the other way round,
Two Stroke Cycle Engine
Ship Propulsion Systems STEAMDIESELOTHERConventionalNuclear Slow Speed Medium Speed Gas Turbine Combined Cycle DIESEL PROPULSION.
Two and Four Cycle Engines
Lesson 5.  Rudolf Diesel-1892-high-compression, self- ignition engine (intended to burn powered coal)  Herbert Akroyd Stuart-1888-oil fuel was ignited.
Internal Combustion Engines – The Diesel References Required Principles of Naval Engineering – (pP ) Optional Introduction to Naval Engineering.
Engine theory Red = on unit test.
Basic Engine Operation & Construction
G.K.BHARAD INSTITUTE OF ENGINEERING Group :03 G.K.BHARAD INSTITUTE OF ENGINEERING Subject : Element Of Mechanical Engineering Subject Code : Topic.
Prepared by : Pavan Narkhede
Internal combustion engine
“DIESEL ENGINE” A SUMMER TRAINING PRESENTATION ON
JAY DUDHELA Roll Num. - T13EC017 Enr. Num
Supreme Power Engine Basics The four cycle engine.
ENGINE DESIGN AND OPERATION. ENGINE CLASSIFICATIONS n VALVE ARRANGEMENT n CAMSHAFT LOCATION n IGNITION TYPE n CYLINDER ARRANGEMENT n NUMBER OF CYLINDERS.
Introduction : = Heat engine : It can be defined as any engine that converts thermal energy to mechanical work output. Examples of heat engines include:
Four Stroke Cycle Engine Fundamentals.
Lesson 5.  Rudolf Diesel-1892-high-compression, self- ignition engine (intended to burn powered coal)  Herbert Akroyd Stuart-1888-oil fuel was ignited.
APPLIED THERMODYNAMIC INTERNAL COMBUSTION ENGINES
Four Stroke Cycle In 1892 Rudolph Diesel invented the compression ignition engine named after him. The first engine was built at Augsburg Maschinenfabrik.
52 RCACS Ground School Engines PO 407 EO 1 “Basic Construction and Four Stroke Cycle”
Free Space Optics(FSO) Free Space Photonics(FSP) atau Wireless optic Merujuk kepada pemindahan gelombang infrared melalui atmosfera untuk mendapatkan komunikasi.
UNIT –III(B) POWER PLANTS
Engines Internal combustion engine needs
Four Stroke Gas Engines The four strokes of a internal combustion engine are: Intake Compression Power Exhaust Each cycle requires two revolutions of the.
1 Four Stroke Engines How does a canon work?. 2 Engine Operation Gasoline & diesel engines convert chemical energy into mechanical energy.
LECTURE 1.
TEKNIK PENGENDALIAN R32.
12 Chapter Engine Design Classifications. 12 Chapter Engine Design Classifications.
IN THE NAME OF ALLAH THE MOST BENEFICIENT THE MOST MERCIFUL:
HOW THE ENGINE WORKS RK.
Thermodynamics, Lesson 4-4: The Air Standard Diesel Cycle
Automotive Engine Terms
Unit - 2 INTERNAL COMBUSTION ENGINES.
Internal Combustion Engines
Internal Combustion Engines – The Diesel
Engine Cycles This presentation will explore: Engine Operation
WHEELSPIN 2k17 Bapurao Deshmukh College Of Engineering Sevagrma (Wardha) Title – WORKING OF FOUR STROKE PETROL ENGINE Author – Abhijit kumar Date 28TH.
Internal Combustion Engine
POWER GENERATION External And Internal Combustion Engines.
Dandang Dandang adalah sebuah bekas yang tertutup di mana air telah dirawat yang berada di bawah tekanan ditukarkan kepada fasa stim dengan menggunakan.
Diesel Automotive Engines
Engineering Thermodynamics ME-103
Pengenalan Sistem Automasi Industri
Introduction to Engine Parts, Operation and Function
Engine Design and Classification
Engine Design and Classofocation
The Otto Cycle By: Vijai Sookrah
TEKNOLOGI ELEKTRONIK INDUSTRI
CHAPTER 8 PENJANAAN ELEKTRIK.
IC Engines Classifications
Internal Combustion Engines
THERMAL ENGINEERING-I
Engine Definition: Engine: A machine that converts energy into mechanical force or motion.
Presentation transcript:

ENJIN PEMBAKARAN DALAM (INTERNAL COMBUSTION ENGINE) Sejenis penggerak utama dimana udara dan bahanapi adalah diberi kepada agen kerja dengan membakar bahanapi di dalamnya.

PRINSIP KERJA Bila campuran udara dan bahanapi di bakar semasa ombah berada pada kedudukan “top dead centre”, tekanan naik dan menolak omboh ke bawah “Bottom dead center”. Injap digunakan untuk mengawal masukkan dan keluaran gas dari enjin Lejang ialah pergerakkan piston

KLASIFIKASI I.C.E MENGIKUT JENIS BAHANAPI (FUEL) REKABENTUK ( BASIC DESIGN) BILANGAN SILINDER (NO OF SILINDER) KEGUNAAN (APPLICATIONS) KEDUDUKAN SILINDER (ARRANGEMENT OF CYLINDER) LEJANG (WORKING CYCLES)

5.2 TYPES & CLASSIFICATIONS OF IC ENGINES IC engine can be classified according to: applications Automobile, truck, locomotive, light aircraft, marine, portable, power system etc basic engine design Reciprocating engine, rotary engine no of cylinders 1, 2, 3, 4, 5, 6, 8, 10, 12 etc. arrangement of cylinder In-line, V-type, opposed, radial working cycle 4-stroke, 2-stroke fuel Gasoline, diesel, nitro methane, alcohol, natural gas, hydrogen etc

ENGINE DESIGN & CYLINDER ARRANGEMENT Inline, 4-cylinder (Straight 4) V-type, 6 cylinder (V6)

ENGINE DESIGN & CYLINDER ARRANGEMENT Opposed, 4-cylinder (Flat 4) Rotary egine

BAHAGIAN-BAHAGIAN UTAMA Bahagian tetap (kepala selinder, blok selinder, kotak engkol) Bahagian bergerak (omboh, rod penyambung, aci engkol, injap, roda tenaga) Peralatan tambahan - Sistem pencucuhan bahanapi - Sistem bekalan bahanapi - Sistem pelinciran - Sistem pendindingan

Air cleaner Carburetor Camshaft Rocker arm Intake valve Cam sprocket Exhaust valve Piston Connecting rod Timing belt Timing belt tensor Crankshaft Oil pump Crank sprocket

4-STROKE ENGINE 4-Stroke Requires 4 stroke of piston to complete a cycle 1-2 Induction stroke Inlet valve open. Exhaust valve is closed. BDC to TDC. Air + fuel is induced. 2-3 Compression stroke Air + fuel is compressed to TDC. Spark occurred at S and combustion occurs mainly at constant volume. Large increase in pressure and temperature. 3-4 Working stroke Hot gas expand pushing the piston down to BDC. Exhaust valve open at E to assist exhaustion. Inlet valve is still closed. 4-1 Exhaust stroke The gas is force to exit the cylinder. Piston moved to TDC. Inlet valve is still closed. 2 revolution of crank shaft per cycle

Enjin 4- lejang(4-stroke)

Lejang masukan/aruhan (INTAKE)

Lejang mampatan (compression)

Lejang kuasa (power)

Lejang Ekzos (exhaust)

START INTAKE COMPRESSION SPARK EXHAUST POWER

4stroke.flv 4stoke3.flv

Enjin 2-lejang Exhaust port Fuel-air-oil mixture compressed Check valve Expansion Exhaust Intake (“Scavenging”) Crank shaft Fuel-air-oil mixture Compression Ignition

2-STROKE ENGINE 2-Stroke Requires 2 stroke of piston to complete a cycle First stroke : BDC – TDC (Both compression and induction stroke) As piston ascends on the compression stroke, the next charge is drawn into crankcase C as the spring loaded valve, S open automatically. Ignition occur before TDC. Both transfer and exhaust port is uncovered. Second stroke: TDC – BDC ( Both working and exhaust stroke) At TDC working stroke begin. As the piston descend through about 80%, the exhaust port is uncovered and exhaust begin. The transfer port is uncovered later due to the shape of the piston and the position of the port. The descending piston push the air to enter the cylinder through the transfer port. 1 revolution of crank shaft per cycle Less efficient compared to 4 stroke High power-to-weight ratio Suitable for small applications

2-STROKE ENGINE Lejang aruhan (intake) bertindak seiring dengan lejang mampatan (compresssion) manakala lejang kuasa (power) seiring dengan lejang ekzos(exhaust) Omboh mempunyai tugas tambahan bertindak sebagai injap. Apabila omboh bergerak dari BDC ke TDC, untuk memampatkan cas udara-bahan api yang telah berada di dalam kebuk pembakaran. Pergerakan omboh ke atas ini akan menyebabkan ruang kotak engkol dipenuhi udara baru melalui lejang aruhan

2 STROKES

Kelebihan 4 lejang kelajuan omboh yang tinggi. Perubahan tinggi dalam keperluan halaju dan beban. Omboh lebih sejuk Kotak engkol yang sama dalam penggunaan silinder banyak. Kecekapan mekanik lebih tinggi

Keburukan 4 - lejang Reka bentuk rumit Bahagian-bahagian yang banyak bergerak. Enjin lebih berat. Memerlukan senggaraan yang lebih. Terdapat turun-naik tork yang menyebabkan penghantaran kuasa tidak seragam.

Kelebihan 2-lejang kuasa keluaran 50% - hingga 80% lebih dari enjin 4 lejang pada kelajuan yang sama. Nisbah kuasa kepada beban adalah lebih baik dari enjin 4 lejang Kos permulaan lebih rendah dari enjin 4 lejang Lebih ringan dan padat Kurang bahagian yang bergerak

Keburukan 2-lejang Pembaziran bahanapi. Penggunaan bahanapi yang tinggi. Pembuangan gas ekzos tidak sempurna, masih terdapat gas ekzos di dalam kebuk pembakaran. Pencemaran bising, asap Enjin cepat mengalami panaslampau.

Injection system for compression engine Menggunakan kaedah mampatan untuk membakar udara-bahan api. nisbah mampatan udara yang lebih tinggi untuk membakar bahan api

Perbandingan dengan enjin petrol Enjin diesel Enjin petrol Bahan api Diesel Petrol Cara pembakaran Mampatan udara (tidak memerlukan sistem penyalaan) Palam pencucuh (memerlukan sistem penyalaan) Cara mematikan enjin Menyekat bekalan bahan api Mematikan sistem penyalaan 5 Suntikan bahan api Karburetor atau suntikan bahan api Kawalan kelajuan Kawalan kualiti (bahan api sahaja) Kawalan kuantiti (campuran udara-bahan api) Penghidupan semasa sejuk palam pemanas ("heater plug") Injap pencekik (bagi karburetor sahaja) Nisbah mampatan Tinggi (15:1 ke atas) Sederhana (6:1 ~ 14:1) Nisbah campuran udara-bahan api Udara berlebihan Menghampiri nisbah stoikiometrik (14.7:1) Kelajuan enjin Rendah (4,500 rpm ke bawah) Tinggi (5,500 ~ 20,000 rpm) Kilasan kemuncak Kelajuan rendah (sekitar 1,600 ~ 2,000 rpm) Kelajuan lebih tinggi (sekitar 2,500 rpm ke atas) Kecekapan kemuncak 45%[3] 30%

Litar pencucuhan enjin bunga api (ignition spark system)

Electronic fuel injector

Fuel Injection System Air intake manifold Throttle Fuel tank

KETUKAN (KNOCKING)& LEDAKAN (DETONATION) Definisi ketukan & ledakan Perkara-perkara yang menyebabkan berlaku ketukan & ledakan Akibat dari ketukan & ledakan

Perkara-perkara yang menyebabkan berlaku ketukan & ledakan Nisbah mampatan enjin yang tinggi. Penggunaan jenis bahanapi yang tidak sesuai. Beban yang melebihi kemampuan enjin. Rekabentuk pembakaran yang tidak sesuai. Suhu udara masukan yang panas. Udara masukan kering(lembap kurang) Terdapat endapan karbon di dalam kebuk pembakaran. Nisbah cas udara – bahanapi terlalu kurang. Menambah kemaraan cucuhan. Semburan bahanapi yang berlebihan oleh pemancit.

Akibat dari ketukan & ledakan Enjin akan mengalami panaslampau. Enjin akan kehilangan kuasa. Kerosakan kepada enjin

PRAPENCUCUHAN Definisi Perkara yang menyebabkan Prapencucuhan

terminology ICE – internal combustion engine SIE – spark ignition engine CIE – compression ignition engine IDC – inner death centre TDC – top death centre BDC – bottom death centre