Chapter 7 Voronoi Diagrams

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

Two Segments Intersect?
Polygon Triangulation
Voronoi Diagram – Fortune ’ s Algorithm Reporter: GI1 11 號 蔡逸凡 Date: 2004/10/28 Reference: Computational Geometry ch7 ISBN:
Map Overlay Algorithm. Birch forest Wolves Map 1: Vegetation Map 2: Animals.
Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
 Distance Problems: › Post Office Problem › Nearest Neighbors and Closest Pair › Largest Empty and Smallest Enclosing Circle  Sub graphs of Delaunay.
Visibility Graph Team 10 NakWon Lee, Dongwoo Kim.
Brute-Force Triangulation
Bichromatic Separating Circles. Problem Given two sets of points, R and B ∈ R ² where | R | = n and | B | = m: – Find the smallest circle containing all.
I. The Problem of Molding Does a given object have a mold from which it can be removed? object not removable mold 1 object removable Assumptions The object.
1 Voronoi Diagrams. 2 Voronoi Diagram Input: A set of points locations (sites) in the plane.Input: A set of points locations (sites) in the plane. Output:
Circles Chapter 10.
The Divide-and-Conquer Strategy
Convex Hull Problem Presented By Erion Lin. Outline Convex Hull Problem Voronoi Diagram Fermat Point.
Voronoi Diagram Presenter: GI1 11號 蔡逸凡
Lecture 7: Voronoi Diagrams Presented by Allen Miu Computational Geometry September 27, 2001.
Computational Geometry -- Voronoi Diagram
17. Computational Geometry Chapter 7 Voronoi Diagrams.
1 Lecture 8: Voronoi Diagram Computational Geometry Prof. Dr. Th. Ottmann Voronoi Diagrams Definition Characteristics Size and Storage Construction Use.
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2004 Chapter 5: Voronoi Diagrams Monday, 2/23/04.
Computing the Delaunay Triangulation By Nacha Chavez Math 870 Computational Geometry; Ch.9; de Berg, van Kreveld, Overmars, Schwarzkopf By Nacha Chavez.
Lecture 6: Point Location Computational Geometry Prof. Dr. Th. Ottmann 1 Point Location 1.Trapezoidal decomposition. 2.A search structure. 3.Randomized,
Voronoi Diagrams.
Planning High-Quality Paths and Corridors Ron Wein Jur P. van den Berg (U. Utrecht) Dan Halperin.
UNC Chapel Hill M. C. Lin Point Location Chapter 6 of the Textbook –Review –Algorithm Analysis –Dealing with Degeneracies.
Delaunay Triangulations Presented by Glenn Eguchi Computational Geometry October 11, 2001.
CSE53111 Computational Geometry TOPICS q Preliminaries q Point in a Polygon q Polygon Construction q Convex Hulls Further Reading.
UNC Chapel Hill M. C. Lin Point Location Reading: Chapter 6 of the Textbook Driving Applications –Knowing Where You Are in GIS Related Applications –Triangulation.
Midpoint and Distance Formulas Goal 1 Find the Midpoint of a Segment Goal 2 Find the Distance Between Two Points on a Coordinate Plane 12.6.
Planning Near-Optimal Corridors amidst Obstacles Ron Wein Jur P. van den Berg (U. Utrecht) Dan Halperin Athens May 2006.
Lesson 8-1: Circle Terminology
5 -1 Chapter 5 The Divide-and-Conquer Strategy A simple example finding the maximum of a set S of n numbers.
Order-k Voronoi diagram in the plane Dominique Schmitt Université de Haute-Alsace.
2/19/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Voronoi Diagrams Carola Wenk Based on: Computational Geometry:
Vocabulary Sheets Why??? Do I have to?? Code. Angle [definition] Formed by two rays with the same endpoint [picture or example of term] [symbol]
Efficient Computing k-Coverage Paths in Multihop Wireless Sensor Networks XuFei Mao, ShaoJie Tang, and Xiang-Yang Li Dept. of Computer Science, Illinois.
Kansas State University Department of Computing and Information Sciences Friday, July 13, 2001 Mantena V. Raju Department of Computing and Information.
UNC Chapel Hill M. C. Lin Computing Voronoi Diagram For each site p i, compute the common inter- section of the half-planes h(p i, p j ) for i  j, using.
UNC Chapel Hill M. C. Lin Delaunay Triangulations Reading: Chapter 9 of the Textbook Driving Applications –Height Interpolation –Constrained Triangulation.
9.3 Circles Objective: Students identify parts of a circle and find central angle measures.
Computational Geometry
Coverage and Deployment 1. Coverage Problems Coverage: is a measure of the Quality of Service (QoS) of a sensor network How well can the network observe.
UNC Chapel Hill M. C. Lin Geometric Data Structures Reading: Chapter 10 of the Textbook Driving Applications –Windowing Queries Related Application –Query.
Unit 4 Circle Terminology Keystone Geometry.
The set of all points inside the circle
3. Polygon Triangulation
CIRCLES Chapter 10.
Introduction to Circles
Point-a location on a plane.
Lesson 10-1: Circle Terminology
Computational Geometry (35/33)
Computational Geometry Capter:1-2.1
Lesson 8-1: Circle Terminology
Circles 4.1 (Chapter 10). Circles 4.1 (Chapter 10)
I. The Problem of Molding
Unit 8 Circles.
9.3 Graph and Write Equations of Circles
On the Geodesic Centers of Polygonal Domains
Chapter 10 Section 10.1.
Circle Vocabulary A Journey into the World of Circles…
Y. Davis Geometry Notes Chapter 10.
Boaz BenMoshe Matthew Katz Joseph Mitchell
Warmup Find the distance between the point (x, y) and the point (h, k).
Circles Chapter 7 Section 7.6.
Warmup Find the distance between the point (x, y) and the point (h, k).
Unit 8 Circles.
Chapter Equations of Circles.
Presentation transcript:

Chapter 7 Voronoi Diagrams Part 2 رعنا دهدشتی آذر 92

7-3 Voronoi Diagram of Line Segments Beach line Sweep Line Algorithm Break Point Events Circle Event Retraction Algorithm Site Event Upper Endpoint Lower Endpoint

3.7 دیاگرام ورونویی پاره خط ها 7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams 3.7 دیاگرام ورونویی پاره خط ها فاصله یک نقطه از صفحه تا یک شی از آن صفحه، با فاصله تا نزدیکترین نقطه از آن شی اندازه گیری می شود.

حالات مختلف دیاگرام پاره خط ها 7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams حالات مختلف دیاگرام پاره خط ها Type 1

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams برای ساده سازی: * فرض می کنیم خطوط از هم مجزا هستند یعنی نقطه تلاقی ندارند. * در endpoint های مشترک خطوط را کمی کوتاه تر در نظر می گیریم تا در این نقاط هم اشتراک نداشته باشند.

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm

Site 7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm فرض می کنیم S = { s1 , s2 , … , sn} مجموعه n پاره خط مجزا است. Site Site endpoint Site interior

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events نوع 1 1- اگر p نزدیکترین نقطه به دو site endpoint باشد و فاصله آن تا هر یک از این دو راس برابر باشد آنگاه p یک پاره خط را می سازد. (مثل point siteها)

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events نوع 2 نوع 1 2- اگر p نزدیکترین نقطه به دو site interior باشد و فاصله آن تا l برابر فاصله آن تا هر یک از این دو نقطه باشد آنگاه p یک پاره خط را می سازد.

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events نوع 2 نوع 3 نوع 1 نوع 3 3- اگر p نزدیکترین نقطه به یک site endpoint و یک site interior سایت دیگر باشد و فاصله آن تا l برابر فاصله آن تا هر یک از این دو باشد آنگاه p یک کمان سهموی را می سازد.

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events نوع 2 نوع 4 نوع 4 نوع 4 نوع 4 نوع 3 نوع 1 نوع 3 4- اگر p به یک site endpoint نزدیک باشد، نزدیک ترین فاصله پاره خطی است که عمود بر پاره خط متناظر با همان سایت است و p با l همان فاصله را دارد و در این حالت p یک پاره خط را طی می کند.

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events نوع 2 نوع 4 نوع 4 نوع 4 نوع 4 نوع 3 نوع 1 نوع 3 نوع 5 5- اگر یک site interior با l برخورد داشته باشد آنگاه نقطه تقاطع یک Break point است که یک پاره خط که همان سایت است را طی می کند.

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events Site Event Circle Event Upper Endpoint Lower Endpoint

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events Site Event Circle Event Upper Endpoint Lower Endpoint

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events Site Event Circle Event Upper Endpoint Lower Endpoint

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events Site Event Circle Event Upper Endpoint Lower Endpoint

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events Site Event Circle Event

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Beach line Break point Events Site Event Circle Event

قضیه 11.7: 7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm قضیه 11.7: دیاگرام ورونوی مربوط به مجموعه n پاره خط مجزا می تواند در زمان O(n log n) و در فضای O(n) محاسبه کرد.

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Pend Pstart

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Pend Pstart

7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm Pend Pstart

Algorithm RETRACTION(S,qstart,qend, r) Input. A set S := {s1, Algorithm RETRACTION(S,qstart,qend, r) Input. A set S := {s1, . . . , sn} of disjoint line segments in the plane, and two discs Dstart and Dend entered at qstart and qend with radius r. The two disc positions do not intersect any line segment of S. Output. A path that connects qstart to qend such that no disc of radius r with its center on the path intersects any line segment of S. If no such path exists, this is reported. 1. Compute the Voronoi diagram Vor(S) of S inside a sufficiently large bounding box. 2. Locate the cells of Vor(P) that contain qstart and qend. 3. Determine the point pstart on Vor(S) by moving qstart away from the nearest line segment in S. Similarly, determine the point pend on Vor(S) by moving qend away from the nearest line segment in S. Add pstart and pend as vertices to Vor(S), splitting the arcs on which they lie into two. 4. Let G be the graph corresponding to the vertices and edges of the Voronoi diagram. Remove all edges from G for which the smallest distance to the nearest sites is smaller than or equal to r. 5. Determine with depth-first search whether a path exists from pstart to pend in G. If so, report the line segment from qstart to pstart, the path in G from pstart to pend, and the line segment from pend to qend as the path. Otherwise, report that no path xists.

قضیه 12.7: 7-3 Voronoi Diagram of Line Segments 7-4 Farthest-Point Voronoi Diagrams Sweep Line Algorithm Retraction Algorithm قضیه 12.7: n مانع به صورت پاره خط های مجزا و یک ربات دیسک شکل داریم، وجود مسیر بدون برخورد بین دو ربات را می توان در زمان O(n log n) و در فضای O(n) تعیین کرد.

با تشکر از توجه شما