Generative Models of M/EEG:

Slides:



Advertisements
Similar presentations
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
Advertisements

EEG-MEG source reconstruction
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
EEG/MEG Source Localisation
Hierarchical Models and
Bayesian models for fMRI data
MEG/EEG Inverse problem and solutions In a Bayesian Framework EEG/MEG SPM course, Bruxelles, 2011 Jérémie Mattout Lyon Neuroscience Research Centre ? ?
Overview Contrast in fMRI v contrast in MEG 2D interpolation 1 st level 2 nd level Which buttons? Other clever things with SPM for MEG Things to bear in.
The M/EEG inverse problem
Bayesian models for fMRI data Methods & models for fMRI data analysis 06 May 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Sensor & Source Space Statistics Sensor & Source Space Statistics Rik Henson (MRC CBU, Cambridge) With thanks to Jason Taylor, Vladimir Litvak, Guillaume.
The M/EEG inverse problem and solutions Gareth R. Barnes.
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
Dynamic Causal Modelling (DCM): Theory Demis Hassabis & Hanneke den Ouden Thanks to Klaas Enno Stephan Functional Imaging Lab Wellcome Dept. of Imaging.
Statistical Analysis of M/EEG Sensor- and Source-Level Data Jason Taylor MRC Cognition and Brain Sciences Unit (CBU) Cambridge Centre for Ageing and Neuroscience.
Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)
Multimodal Brain Imaging Will D. Penny FIL, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC, Havana.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
EEG/MEG Source Localisation SPM Course – Wellcome Trust Centre for Neuroimaging – Oct ? ? Jérémie Mattout, Christophe Phillips Jean Daunizeau Guillaume.
EEG/MEG source reconstruction
Bayesian Inference and Posterior Probability Maps Guillaume Flandin Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course,
Sensor & Source Space Statistics Sensor & Source Space Statistics Rik Henson (MRC CBU, Cambridge) With thanks to Jason Taylor, Vladimir Litvak, Guillaume.
Dynamic Causal Modelling for EEG and MEG
EEG/MEG source reconstruction
Ch. 5 Bayesian Treatment of Neuroimaging Data Will Penny and Karl Friston Ch. 5 Bayesian Treatment of Neuroimaging Data Will Penny and Karl Friston 18.
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
Multimodal Brain Imaging Wellcome Trust Centre for Neuroimaging, University College, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC,
Bayesian Methods Will Penny and Guillaume Flandin Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course, London, May 12.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
M/EEG: Statistical analysis and source localisation Expert: Vladimir Litvak Mathilde De Kerangal & Anne Löffler Methods for Dummies, March 2, 2016.
MEG Analysis in SPM Rik Henson (MRC CBU, Cambridge) Jeremie Mattout, Christophe Phillips, Stefan Kiebel, Olivier David, Vladimir Litvak,... & Karl Friston.
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
1 Jean Daunizeau Wellcome Trust Centre for Neuroimaging 23 / 10 / 2009 EEG-MEG source reconstruction.
Bayesian Model Selection and Averaging SPM for MEG/EEG course Peter Zeidman 17 th May 2016, 16:15-17:00.
Imaging Source Reconstruction in the Bayesian Framework
J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland
Group Analyses Guillaume Flandin SPM Course London, October 2016
Statistical Analysis of M/EEG Sensor- and Source-Level Data
Dynamic Causal Modelling (DCM): Theory
M/EEG Analysis in SPM Rik Henson (MRC CBU, Cambridge)
Neuroscience Research Institute University of Manchester
The General Linear Model (GLM)
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
Contrasts & Statistical Inference
The General Linear Model
Statistical Parametric Mapping
Statistical Analysis of M/EEG Sensor- and Source-Level Data
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Bayesian Methods in Brain Imaging
The General Linear Model
Hierarchical Models and
The General Linear Model (GLM)
Bayesian inference J. Daunizeau
M/EEG Statistical Analysis & Source Localization
Anatomical Measures John Ashburner
Contrasts & Statistical Inference
Bayesian Inference in SPM2
The General Linear Model
Mixture Models with Adaptive Spatial Priors
Dynamic Causal Modelling for evoked responses
Probabilistic Modelling of Brain Imaging Data
The General Linear Model
Will Penny Wellcome Trust Centre for Neuroimaging,
DCM Demo – Model Specification, Inversion and 2nd Level Inference
Bayesian Model Selection and Averaging
Contrasts & Statistical Inference
Group DCM analysis for cognitive & clinical studies
Presentation transcript:

Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Overview A Generative Model of M/EEG Group inversion (optimising priors across subjects) Multimodal integration: 3.1 Symmetric integration (fusion) of MEG + EEG 3.2 Asymmetric integration of M/EEG + fMRI 3.3 Full fusion of M/EEG + fMRI?

1. A PEB Framework for MEG/EEG (Bayesian inference) (Linear) Forward Model for MEG/EEG (for one timepoint): Y = Data n sensors J = Sources p>>n sources L = Leadfields n sensors x p sources E = Error n sensors (Gaussian) Likelihood: C(e) = n x n Sensor (error) covariance Prior: C(j) = p x p Source (prior) covariance Posterior: Phillips et al (2005), Neuroimage

1. A PEB Framework for MEG/EEG (Covariance Components/Priors) Specifying (co)variance components (priors/regularisation): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 1. Sensor components, (error): # sensors # sensors “IID” (white noise): Empty-room: 2. Source components, (priors/regularisation): # sources # sources Multiple Sparse Priors (MSP): “IID” (min norm): Friston et al (2008) Neuroimage

1. A PEB Framework for MEG/EEG (Hyperpriors) When multiple Q’s are correlated, estimation of hyperparameters λ can be difficult (eg local maxima), and they can become negative (improper for covariances) Prestim Baseline Anti-Averaging Smoothness Depth-Weighting Sensor priors projected to sensors Source priors To overcome this, one can: 1) impose positivity on hyperparameters: 2) impose weak, shrinkage hyperpriors: uninformative priors are then “turned-off” (cf. “Automatic Relevance Detection”) Henson et al (2007) Neuroimage

1. A PEB Framework for MEG/EEG (Generative Model) Source and sensor space Fixed Variable Data Friston et al (2008) Neuroimage

1. A PEB Framework for MEG/EEG (Estimation/Inversion) 1. Obtain Restricted Maximum Likelihood (ReML) estimates of the hyperparameters (λ) by maximising the variational “free energy” (F): 2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J): cf. Tikhonov 3. Maximal F approximates Bayesian (log) “model evidence” for a model, m: Accuracy Complexity (…where and are the posterior mean and covariance of hyperparameters) Friston et al (2002) Neuroimage

1. A PEB Framework for MEG/EEG Summary: Automatically “regularises” in principled fashion… …allows for multiple constraints (priors)… …to the extent that multiple (100’s) of sparse priors possible… …(or multiple error components or multiple fMRI priors)… …furnishes estimates of model evidence, so can compare constraints

Overview A Generative Model of M/EEG Group inversion (optimising priors across subjects) Multimodal integration: 3.1 Symmetric integration (fusion) of MEG + EEG 3.2 Asymmetric integration of MEG + fMRI 3.3 Full fusion of MEG/EEG + fMRI?

2. Group Inversion (Covariance Components) Specifying (co)variance components (priors/regularisation): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 1. Sensor components, (error): # sensors # sensors “IID” (white noise): Empty-room: 2. Source components, (priors/regularisation): # sources # sources Multiple Sparse Priors (MSP): “IID” (min norm): Friston et al (2008) Neuroimage

2. Group Inversion (Covariance Components) Specifying (co)variance components (priors/regularisation): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 1. Sensor components, (error): # sensors # sensors “IID” (white noise): Empty-room: 2. Optimise Multiple Sparse Priors by pooling across participants # sources Litvak & Friston (2008) Neuroimage

2. Group Inversion (one subject) (Generative Model) Source and sensor space Fixed Variable Data Litvak & Friston (2008) Neuroimage

2. Group Inversion (multiple subjects) (Generative Model) Source and sensor space Fixed Variable Data Litvak & Friston (2008) Neuroimage

Litvak & Friston (2008) Neuroimage 2. Group Inversion (multiple subjects) (Re-referencing leadfield matrices) Concatenate data across subjects …having projected to an “average” leadfield matrix Common source-level priors: Subject-specific sensor-level priors: Litvak & Friston (2008) Neuroimage

2. Group Inversion (Generative Model) MMN MSP MSP (Group) Litvak & Friston (2008) Neuroimage

2. Group Inversion (Generative Model) MMN + 3 fMRI priors MMN + 3 fMRI priors (Group) Henson et al (submitted) Frontiers

Overview A Generative Model of M/EEG Group inversion (optimising priors across subjects) Multimodal integration: 3.1 Symmetric integration (fusion) of MEG + EEG 3.2 Asymmetric integration of MEG + fMRI 3.3 Full fusion of MEG/EEG + fMRI?

3. Types of Multimodal Integration “Neural” Activity Causes (hidden): (inversion) Generative (Forward) Models: Balloon Model Head Model Head Model ? Data: fMRI MEG EEG ? (future) Henson (2010) Biomag

3. Types of Multimodal Integration “Neural” Activity Causes (hidden): Symmetric Integration (Fusion) Generative (Forward) Models: Balloon Model Head Model Head Model ? Data: fMRI MEG EEG ? (future) Asymmetric Integration Daunizeau et al (2007), Neuroimage

3.1 Fusion of MEG+EEG (Sensor Components) Specifying (co)variance components (priors/regularisation): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 1. Sensor components, (error): # sensors # sensors “IID” (white noise): Empty-room: 2. Source components, (priors/regularisation): # sources # sources Multiple Sparse Priors (MSP): “IID” (min norm): Friston et al (2008) Neuroimage

3.1 Fusion of MEG+EEG (Sensor Components) Specifying (co)variance components (priors/regularisation): Ci(e) = Sensor error covariance for ith modality Qij = jth component for ith modality λij = Hyper-parameters 1. Sensor components, (error): # sensors # sensors E.g, white noise for 2 modalities: 2. Source components, (priors/regularisation): # sources # sources Multiple Sparse Priors (MSP): “IID” (min norm): Henson et al (2009) Neuroimage

3.1 Basic Model for MEG or EEG (Generative Model) Source and sensor space Fixed Variable Data Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG (Generative Model) Source and sensor space Fixed Variable Data Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG (Theory) Stack data and leadfields for d modalities: (note: common sources and source priors, but separate error components) Where data / leadfields scaled to have same average / predicted variance: mi = Number of spatial modes (e.g, channels) Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG (Application) ERs from 12 subjects for 3 simultaneously-acquired Neuromag sensor-types: Magnetometers (MEG, 102) (Planar) Gradiometers (MEG, 204) Electrodes (EEG, 70) fT μV RMS fT/m Faces Scrambled ms ms ms Faces - Scrambled 150-190ms Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG Henson et al (2009) Neuroimage +31 -51 -15 +19 -48 -6 MEG mags MEG grads Faces Scrambled Faces – Scrambled, 150-190ms +43 -67 -11 +44 -64 -4 EEG FUSED IID noise for each modality; common MSP for sources Henson et al (2009) Neuroimage (fixed number of spatial+temporal modes)

3.1 Fusion of MEG+EEG (Conclusions) Fusing magnetometers, gradiometers and EEG increased the conditional precision of the source estimates relative to inverting any one modality alone (when equating number of spatial+temporal modes) The maximal sources recovered from fusion were a plausible combination of the ventral temporal sources recovered by MEG and the lateral temporal sources recovered by EEG (Simulations show the relative scaling of mags and grads agrees with empty-room data) Henson et al (2009) Neuroimage

3.2 Asymmetric Integration of M/EEG+fMRI Specifying (co)variance components (priors/regularisation): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 1. Sensor components, (error): # sensors # sensors “IID” (white noise): Empty-room: 2. Source components, (priors/regularisation): # sources # sources Multiple Sparse Priors (MSP): “IID” (min norm): Friston et al (2008) Neuroimage

3.2 Asymmetric Integration of M/EEG+fMRI Specifying (co)variance components (priors/regularisation): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 1. Sensor components, (error): # sensors # sensors “IID” (white noise): Empty-room: 2. Each suprathreshold fMRI cluster becomes a separate prior # sources “IID” (min norm): fMRI Priors: # sources # sources Henson et al (2010) Hum. Brain Map.

3.2 Basic model for MEG or EEG (Generative Model) Source and sensor space Fixed Variable Data Friston et al (2008) Neuroimage

3.2 Asymmetric Integration of M/EEG+fMRI (Generative Model) Source and sensor space Fixed Variable Data Henson et al (2010) Hum. Brain Map.

3.2 Integration of M/EEG+fMRI (Priors) T1-weighted MRI {T,F,Z}-SPM Anatomical data Functional data … 1. Thresholding and connected component labelling Gray matter segmentation Cortical surface extraction … 2. Projection onto the cortical surface using the Voronoï diagram … 3D geodesic Voronoï diagram 3. Prior covariance components Henson et al (2010) Hum. Brain Map.

3.2 Integration of M/EEG+fMRI (Application) 1 2 SPM{F} for faces versus scrambled faces, 15 voxels, p<.05 FWE 3 4 5 5 clusters from SPM of fMRI data from separate group of (18) subjects in MNI space Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) Magnetometers (MEG) * * * * Gradiometers (MEG) Negative Free Energy (a.u.) (model evidence) * * * * Electrodes (EEG) * * * None Global Local (Valid) Local (Invalid) Valid+Invalid (binarised, variance priors) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) Magnetometers (MEG) * * * * Gradiometers (MEG) Negative Free Energy (a.u.) (model evidence) * * * * Electrodes (EEG) * * * None Global Local (Valid) Local (Invalid) Valid+Invalid (binarised, variance priors) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) Magnetometers (MEG) * * * * Gradiometers (MEG) Negative Free Energy (a.u.) (model evidence) * * * * Electrodes (EEG) * * * None Global Local (Valid) Local (Invalid) Valid+Invalid (binarised, variance priors) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) Magnetometers (MEG) * * * * Gradiometers (MEG) Negative Free Energy (a.u.) (model evidence) * * * * Electrodes (EEG) * * * None Global Local (Valid) Local (Invalid) Valid+Invalid (binarised, variance priors) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) Magnetometers (MEG) * * * * Gradiometers (MEG) Negative Free Energy (a.u.) (model evidence) * * * * Electrodes (EEG) * * * None Global Local (Valid) Local (Invalid) Valid+Invalid (binarised, variance priors) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) IID sources and IID noise (L2 MNM) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) None Global Local (Valid) Local (Invalid) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) IID sources and IID noise (L2 MNM) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) None Global Local (Valid) Local (Invalid) Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) IID sources and IID noise (L2 MNM) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) None Global Local (Valid) Local (Invalid) fMRI priors counteract superficial bias of L2-norm Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) IID sources and IID noise (L2 MNM) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) None Global Local (Valid) Local (Invalid) fMRI priors counteract superficial bias of L2-norm Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application) Right Posterior Fusiform (rPF) Right Medial Fusiform (rMF) Right Lateral Fusiform (rLF) +26 -76 -11 +32 -45 -12 +41 -43 -24 Differential Response (Faces vs Scrambled) R Left occipital pole (lOP) -27 -93 0 Differential Response (Faces vs Scrambled) Gradiometers (MEG) (5 Local Valid Priors) Left Lateral Fusiform (lLF) L -43 -47 -21 Differential Response (Faces vs Scrambled) NB: Priors affect variance, not precise timecourse… Henson et al (2010) Hum. Brain Map. Prior 4. Prior 5.

3.2 Fusion of MEG+fMRI (Conclusions) Adding a single, global fMRI prior increases model evidence Adding multiple valid priors increases model evidence further Helpful if some fMRI regions produce no MEG/EEG signal (or arise from neural activity at different times) Adding invalid priors does not necessarily increase model evidence, particularly in conjunction with valid priors Can counteract superficial bias of, e.g, minimum-norm Affects variance but not not precise timecourse Henson et al (2010) Hum. Brain Map.

3.3 Fusion of fMRI and MEG/EEG? “Neural” Activity Causes (hidden): Fusion of fMRI + MEG/EEG? Balloon Model Head Model Head Model ? Data: fMRI MEG EEG ? (future) Henson (2010) Biomag

3.3 Fusion of fMRI and MEG/EEG? Source and sensor space Fixed Variable Data Henson (submitted) Frontiers

3.3 Fusion of fMRI and MEG/EEG? Source and sensor space Fixed Variable Data Henson (submitted) Frontiers

Overall Conclusions The PEB (in SPM8) framework is advantageous Group optimisation of MSPs can be advantageous Full fusion of MEG and EEG is advantageous Using fMRI as (spatial) priors on M/EEG is advantageous Unclear that fusion of fMRI and M/EEG is advantageous

The End

3.2. Fusion of MEG+fMRI fMRI hyperparameters Henson et al (2010) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) ln(λ)+32 Participant fMRI hyperparameters Local Valid ln(λ)+32 Participant Local Invalid Henson et al (2010) Prior 4. Prior 5.