Improving Pulsar Timing

Slides:



Advertisements
Similar presentations
The Parkes Pulsar Timing Array R. N. Manchester CSIRO Astronomy and Space Science Sydney Australia Summary Short introduction to pulsar timing basics Pulsar.
Advertisements

LIGO-G Z Beating the spin-down limit on gravitational wave emission from the Crab pulsar Michael Landry LIGO Hanford Observatory for the LIGO.
Update of the European Pulsar Timing Array An array of 100-m class telescopes to form a pulsar timing array and ultimately forming the Large European Array.
The Extreme Dimension: Time-Variability and The Smallest ISM Scales Dan Stinebring Oberlin College.
Using Tempo to calculate solar barycentric time Dejan Paradiž University of Ljubljana.
RFI Subtraction with a reference horn… F. Briggs & M. Kesteven illustrations from Parkes Telescope… (Jon Bell et al.) origins in Int-Mit group at CSIRO.
Gravitational Wave Detection Using Pulsar Timing Current Status and Future Progress Fredrick A. Jenet Center for Gravitational Wave Astronomy University.
Pulsar timing with tempo2 George Hobbs Australia Telescope National Facility
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: Radio I: Pulsars Geoff Bower.
Detection of Gravitational Waves with Pulsar Timing R. N. Manchester Australia Telescope National Facility, CSIRO Sydney Australia Summary Brief review.
Navigation using pulsars ASTRONOMY AND SPACE SCIENCE George Hobbs Nov 2014.
Search for the Gravitational Wave Memory effect with the Parkes Pulsar Timing Array Jingbo Wang 1,2,3, Hobbs George 3, Dick Manchester 3, Na Wang 1,4 1.
The Search for Gravitational Waves using Pulsar Timing R. N. Manchester CSIRO Astronomy and Space Science Sydney Australia Summary Brief introduction to.
Current Results and Future Capabilities of Pulsar Timing Andrea N. Lommen International Liaison for NANOGrav Associate Professor of Physics and Astronomy.
The Effect of Solar Wind on Pulsar Observations Xiaopeng YOU Southwest University, Chongqing, China.
Neutron Star (Mostly Pulsar) Masses Ingrid Stairs UBC Vancouver CAWONAPS TRIUMF Dec. 9, 2010.
Scuola nazionale de Astrofisica Radio Pulsars 4: Precision Timing and GR Outline The double pulsar PSR J A/B Strong-field tests of GR Pulsar Timing.
Qiao,G.J. Dept. of Astronomy, Peking Univ. Collaborators: Zhang, B.( University of Nevada ), Xu, R.X.(PKU), Han,J.L.(NAOC), Lin,W.P.(SHO),Lee,K.J.(PKU)
Gravitational wave detection using radio pulsar timing Fredrick A Jenet CGWA/UTB.
Pulsar Timing Phenomenology … an overview…. George Hobbs Australia Telescope National Facility.
The timing behaviour of radio pulsars George Hobbs Australia Telescope National Facility
Timing studies and PSR J analysis Till Eifert, HU Berlin April, 2005.
APSR: digital signal processing at Parkes Willem van Straten, Andrew Jameson and Matthew Bailes Centre for Astrophysics & Supercomputing Third ATNF Gravitational.
Finding Fast Pulsars Today andTomorrow Pulsar Timing Array - A Nanohertz Gravitational Wave Telescope July 21-23, 2005 Jason Hessels McGill University.
Pulsar search and timing Pulsar search and timing 22/10/2011 INDIGO Bhal Chandra Joshi Bhal Chandra Joshi.
Pulsar Studies at Urumqi Na Wang Urumqi Observatory, NAOC.
The Parkes Pulsar Timing Array Project R. N. Manchester Australia Telescope National Facility, CSIRO Sydney Australia Summary Brief introduction to pulsars.
RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing, August RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing,
Gravitational Wave and Pulsar Timing Xiaopeng You, Jinlin Han, Dick Manchester National Astronomical Observatories, Chinese Academy of Sciences.
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
Aristeidis Noutsos University of Manchester. The LOFAR Ionosphere See Ger’s talk, in Hamburg last year. Variations of ~3 rad m –2 were observed in the.
Name EPOCH (Hz) (10 –12 s –2 ) Data Range (MJD) J (4)– (1)55666 – (7)– (5)55912.
Scuola nazionale de Astrofisica Radio Pulsars 2: Timing and ISM
Sarah Burke Spolaor Jet Propulsion Laboratory, California Institute of Technology Gravitational Wave Detection with Pulsar Timing Arrays: Status and Prospects.
Coherent Dedispersion Pulsar Timing Machines Matthew Bailes + Swinburne, Caltech, ATNF, CASPER.
Observing Vela With XDM The First Year Sarah Buchner KAT Bursary conference – Dec 2009.
Interstellar turbulent plasma spectrum from multi-frequency pulsar observations Smirnova T. V. Pushchino Radio Astronomy Observatory Astro Space Center.
Gravitational Wave Observations with Pulsar Timing Arrays Andrea Lommen Franklin and Marshall College Lancaster, PA.
What Goes into a Pulsar Timing Model? David Nice Physics Department, Princeton University Pulsar Timing Array: A Nanohertz Gravitational Wave Telescope.
Project P2445 – Four-Frequency High Precision Timing of a Millisecond Pulsar Ryan Shannon (PI, Graduate Student, Cornell University), with Jim Cordes,
Low Frequency Observations of the ISM and Pulsar Timing Joris Verbiest Xiaopeng You (Southwest University, China) William Coles (UCSD) George Hobbs (ATNF)
Timing with analytic frequency- dependent templates David Champion Gravitational Wave Meeting 2007.
Pulsar timing ASTRONOMY AND SPACE SCIENCE George Hobbs October 2015, Urumqi.
Pulsar Timing and the Detection of Gravitational Waves R. N. Manchester CSIRO Astronomy and Space Science Sydney Australia Summary Review of pulsar properties.
CSIRO Astronomy and Space Science, Sydney, Australia
Michael Kramer Chiang Mai- 28 June 2005 Title High precision radio pulsar timing with the EPTA Gemma Janssen, UvA.
Pulsar timing ASTRONOMY AND SPACE SCIENCE George Hobbs August 2015, Kunming, China-NZ-SA Joint SKA summer school.
The State of Gravitational Wave Detection with Pulsar Timing Arrays
First result with PAF on a big single-dish radio telescope X. Deng, A. Chippendale, S. Johnston, G. Hobbs, D. George, R. Karuppusamy ASTRONOMY AND SPACE.
GWDAW11, Potsdam 19/12/06 LIGO-G Z 1 New gravitational wave upper limits for selected millisecond pulsars using LIGO S5 data Matthew Pitkin for.
A Fan Beam Model for Radio Pulsars Hongguang Wang (王洪光) Center for Astrophysics, Guangzhou University 广州大学天体物理中心 Fast Pulsar Symposium 4.
MAGIC pulsar workshop, Padova, Feb 2010
Detecting gravitational waves with the SKA: Recent results and open questions Present how we have limits on GW levels to constrain the massive black hole.
Methods of Detecting the Gravitational Wave Background
Long-Term Timing of Globular Cluster Pulsars
“Astrometry through beer goggles” Adam Deller Swinburne University
MPIfR Results from the A. Chippendale ATUC, 14 Nov 2016
Gravitational Waves and Pulsar Timing
Synopsis “The Matrix”: polarisation and pulsar timing
Gravitational Wave Astronomy with a Radio Telescope
NANOGrav Long-term timing of two faint millisecond pulsars at Arecibo
Ten Years of Millisecond Pulsar Timing at Kalyazin
Pulsar and Transient Science with the 12m Antenna
Speaker:Yi Xie Lunch Talk
Observations of pulsar microstructure with the GMRT
Extrasolar planet detection: a view from the trenches
Polarization Properties of an Eclipsing Pulsar
The SKA as a Pulsar Search, Timing and Parallax Machine
Research plan of Jingbo
Pulse Nulling and Subpulse Drifting Properties in Pulsars
Presentation transcript:

Improving Pulsar Timing Willem van Straten George Hobbs, Rick Jenet

Why? Gravitational Wave detection/sensitivity MSPs binary system dynamics Astrometry: Solar System Ephemeris Earth Wobble Terrestrial Time Timing Noise (incl. glitches)

EPTA (Effelsberg/ Westerbork/ Jodrell Bank) ~30 115 MHz – 8GHz ~1us Observatory Number of pulsars Observing span (yr) System Observing frequency Rms Jodrell Bank ~600 0-35 FB 600-1600MHz >10us Parkes msps 15 ~10 CD 1.4GHz, 3GHz >100ns Parkes young 114 1.4GHz PPTA 20 2 CD/DFB/CORR 600MHz, 1.4/3 GHz Arecibo 7 ~20 0.4/1.4/2.4GHz >200ns Greenbank EPTA (Effelsberg/ Westerbork/ Jodrell Bank) ~30 115 MHz – 8GHz ~1us Nancay ~1.4GHz ~500ns Urumqi 284 10 1.5GHz >100us Hartebeesthoek 30 1.6/2.3GHz GMRT 1 (1937+21) FB/CD 325/610 MHz G. Hobbs

How? Precision (Noise) Software/Modeling Accuracy (Systematics) Numerical Precision Arrival Time Estimation Time Standard Precision (Noise) Polarimetric Calibration Interstellar Scintillation Earth Wobble Accuracy (Systematics) RFI Mitigation Solar System Ephemeris Solar Wind Earth Atmosphere DM Variation Clock Correction Time/Freq Resolution Sensitivity Hardware/Instrumentation

Modelling Software (tempo2) Clock Corrections Physical Delays: Solar System Ephemeris (incl. Shapiro delay) Earth Wobble precession & nutation (40ns) polar motion (60ns) Atmospheric Delays troposphere (20ns) ionosphere (1ns)

RFI mitigation using an adaptive filter Kesteven et al. (2004)

Interstellar Scintillation Figure 1, Walker & Stinebring (2005)

Arrival Time Estimation Frequency domain (Taylor 1992) Multi-component Gaussian (Kramer et al. 1994) Invariant interval (Britton et al. 2000) Full polarization (van Straten 2004) Time vs. frequency domain (Hotan et al. 2005) Higher order moments (Jenet & Hobbs 2005)

Full Polarization TOA Useful for timing? (Kramer et al. 1999) Stokes Q, U, V often sharper than Stokes I Useful for timing? (Kramer et al. 1999)

PSR J0437-4715

PSR J1713+0747

PSR B1937+21

PSR J1022+1001

Formalism van Straten (2004)

Simulation Position Angle of Linear Polarization: Gaussian Total Intensity Profile with Width, w Constant Degree of Polarization, p Measurement noise, n

PSR J0437-4715 1.1

PSR J1713+0747 1.0

PSR B1937+21 1.4

PSR J1022+1001 1.6

PSR J0437-4715

PSR J1713+0747

PSR B1937+21

PSR J1022+1001

Results Pulsar Benefit Systematic J0437-4715 1.11(1) 300 ns 1713+0747 0.99(6) 35 ns B1937+21 1.4(3) 30 ns 1022+1001 1.56(8) 400 ns

Conclusion Effectiveness varies by pulsar To do: Full Polarization TOA holds promise Effectiveness varies by pulsar To do: Produce/acquire well-calibrated, high S/N polarimetric pulse profile (standards) Run simulations Improve arrival time estimates