Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025

Slides:



Advertisements
Similar presentations
End of Chapter 4 Movement of a Flood Wave and begin Chapter 7 Open Channel Flow, Manning’s Eqn. Overland Flow.
Advertisements

Hydraulics Engineering
Chapter 7 continued Open Channel Flow
CH 7 - Open Channel Flow Brays Bayou Concrete Channel Uniform & Steady
Solving systems of equations with 2 variables
Uniform Open Channel Flow
Basic Hydraulics: Channels Analysis and design – I
Basic Hydraulics: Hydraulic continuity concepts
ERT 349 SOIL AND WATER ENGINEERING
Using the Quadratic Formula
Uniform Open Channel Flow – Ch 7
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: c(x,t) [mg/L] of chloride
Discharge, stream flow & channel shape
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: KR,b wave direction αo plan contours view beach db = 15 [ft]
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: Fcr [lb/in2] Fcr E = 2.9 * 107 [lb/in2] fy = 36,000 [lb/in2]
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
P4 Day 1 Section P4.
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: F [lbf] in order to keep the gate vertical air F 267 water 293
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Do Now 10/11/11 In your notebook, describe the PROCESS (steps you would take) to solve the following question. Then solve. What is this an example of?
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Section P4.
Presentation transcript:

Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025 Find the critical slope, s sub c. [pause] In this problem, --- b=12 [ft] n=0.025

Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025 a rectangular channel flows at a steady 210 cubic feet per second, --- b=12 [ft] n=0.025

Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025 and has a known base width and roughness coefficient. [pause] To find the critical slope, --- b=12 [ft] n=0.025

Find: sc Q= A * R2/3 * S 1/2 1.49 n d b ft3 Q=210 s b=12 [ft] n=0.025 we’ll start with Manning’s equation, solve for the slope, --- b=12 [ft] n=0.025

Find: sc Q= A * R2/3 * S 1/2 2 S= 1.49 * A * R2/3 1.49 n Q * n d b ft3 [pause] Then we’ll plug in the values for --- b=12 [ft] n=0.025

Find: sc Q= A * R2/3 * S 1/2 2 S= 1.49 * A * R2/3 1.49 n Q * n d b area [ft2] hydraulic radius [ft] ft3 s Q=210 flowrate, area, hydraulic radius and roughness, during critical flow conditions. [pause] The problem statement --- ft3 flowrate roughness s b=12 [ft] n=0.025

Find: sc Q= A * R2/3 * S 1/2 2 S= 1.49 * A * R2/3 1.49 n Q * n d b area [ft2] hydraulic radius [ft] ft3 s Q=210 provides the flowrate and roughness coefficient, --- ft3 flowrate roughness s b=12 [ft] n=0.025

Find: sc Q= A * R2/3 * S 1/2 2 S= 1.49 * A * R2/3 1.49 n Q * n d b area [ft2] hydraulic radius [ft] ft3 s Q=210 so we’re left to determine the area and hydraulic radius. [pause] During critical flow, --- ft3 flowrate roughness s b=12 [ft] n=0.025

Find: sc vc FR=1= critical flow g*D d b ft3 Q=210 s b=12 [ft] n=0.025 the froude number equals 1, which equals the critical velocity divided by the square root of the gravitational acceleration times the hydraulic depth, --- b=12 [ft] n=0.025

Find: sc vc FR=1= critical T flow g*D A A d T b ft3 Q=210 s b=12 [ft] where the hydraulic depth is defined as the cross-sectional area of the channel, A, divided by the top width of the channel, T. b=12 [ft] n=0.025

Find: sc vc FR=1= critical T flow A g*D A =dc d T b b ft3 Q=210 s For a rectangular channel, the hydraulic depth equals the critical depth, lowercase d sub c. b=12 [ft] n=0.025

Find: sc vc FR=1= vc 1= critical T flow A g*D d g*dc A dc= b b ft3 s Q=210 Next, we’ll solve for this critical depth which equals, --- b=12 [ft] n=0.025

Find: sc vc FR=1= vc FR=1= vc critical T flow A g*D d g*dc A dc= b b 2 ft3 s g Q=210 the critical velocity, squared, divided by the gravitational acceleration. Then we’ll substitute the --- b=12 [ft] n=0.025

Find: sc vc FR=1= vc FR=1= vc critical T flow A g*D d g*dc A dc= b b 2 ft3 s g Q=210 area divided by base width, in for the critical depth, and --- b=12 [ft] n=0.025

Find: sc vc FR=1= vc FR=1= vc critical T flow A g*D d g*dc A dc= b b 2 Q ft3 s vc= g Q=210 flowrate divided by area, in for velocity. [pause] If we solve this equation for the area, --- A b=12 [ft] n=0.025

Find: sc vc FR=1= vc FR=1= vc critical T flow A g*D d g*dc A dc= b b 2 Q ft3 s vc= g Q=210 we find the area equals cubed root of the base width times the critical flowrate squared, divided by the gravitational acceleration. A 1/3 b*Qc 2 A= b=12 [ft] g n=0.025

Find: sc vc FR=1= vc FR=1= vc critical T flow A g*D d g*dc A dc= b b 2 Q ft3 vc= g Q=210 Plugging in the values for the base width, critical flowrate, and acceleration, --- A s 1/3 b*Qc 2 A= b=12 [ft] ft g 32.2 s2 n=0.025

Find: sc vc FR=1= vc FR=1= vc critical T flow A g*D d g*dc A dc= b b 2 Q ft3 vc= g Q=210 the area equals, 25.42 squared feet. [pause] Returning to Manning’s equation, --- A s 1/3 b*Qc 2 A= b=12 [ft] ft g 32.2 s2 n=0.025 A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 T Q * n d hydraulic radius [ft] b ft3 the last variable to solve for, is the hydraulic radius, R. The hydraulic radius equals --- s b=12 [ft] n=0.025 A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 A R= P T Q * n d hydraulic radius [ft] b the cross-sectional area divided by the wetted perimeter, where the wetted perimeter equals --- s b=12 [ft] n=0.025 A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 A R= P P = b + 2*dc T Q * n d hydraulic radius [ft] R= P b P = b + 2*dc ft3 Q=210 the base width, b, plus 2 times the critical depth, d sub c, where the critical depth equals, --- s b=12 [ft] n=0.025 A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 A R= P P = b + 2*dc dc= T Q * n d hydraulic A radius [ft] R= P b P = b + 2*dc ft3 Q=210 the critical area divided by the base width. [pause] Substituting in the critical area, --- Ac s dc= b=12 [ft] b n=0.025 A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 A R= P P = b + 2*dc Ac R= dc= b+2 T Q * n 2 S= 1.49 * A * R2/3 d hydraulic A radius [ft] R= P b P = b + 2*dc ft3 Ac Q=210 and base width, we compute the hydraulic radius to be ---- Ac s R= dc= Ac b=12 [ft] b+2 b * b n=0.025 A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 A R= P P = b + 2*dc Ac R= dc= b+2 T Q * n 2 S= 1.49 * A * R2/3 d hydraulic A radius [ft] R= P b P = b + 2*dc ft3 Ac Q=210 1.566 feet. [pause] Back to Manning’s equation, --- Ac s R= dc= Ac b=12 [ft] b+2 b * b n=0.025 R=1.566 [ft] A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 T Q * n d b ft3 Q=210 s b=12 [ft] we can now plug the appropriate values, s b=12 [ft] n=0.025 R=1.566 [ft] A=25.42 [ft2]

Find: sc 2 S= 1.49 * A * R2/3 T Q * n d b ft3 Q=210 s b=12 [ft] and the critical slope calculates to --- s b=12 [ft] n=0.025 R=1.566 [ft] A=25.42 [ft2]

Find: sc S=0.0105 2 S= 1.49 * A * R2/3 T Q * n d b ft3 Q=210 s 0.0105, --- s b=12 [ft] n=0.025 R=1.566 [ft] A=25.42 [ft2]

Find: sc S=0.0105 =1.05% 2 S= 1.49 * A * R2/3 T Q * n d b ft3 Q=210 s or 1.05%. s b=12 [ft] n=0.025 R=1.566 [ft] A=25.42 [ft2]

Find: sc S=0.0105 =1.05% 2 S= 1.49 * A * R2/3 0.7% 1.1% 1.5% 1.9% T Q * n 2 S= 1.49 * A * R2/3 0.7% 1.1% 1.5% 1.9% d S=0.0105 =1.05% b ft3 Q=210 When reviewing the possible solutions, --- s b=12 [ft] n=0.025 R=1.566 [ft] A=25.42 [ft2]

Find: sc AnswerB S=0.0105 =1.05% 2 S= 1.49 * A * R2/3 0.7% 1.1% 1.5% T Q * n 2 S= 1.49 * A * R2/3 0.7% 1.1% 1.5% 1.9% d S=0.0105 =1.05% b AnswerB ft3 Q=210 the answer is B. s b=12 [ft] n=0.025 R=1.566 [ft] A=25.42 [ft2]

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4