So far…. Firmware identifies hardware devices present

Slides:



Advertisements
Similar presentations
Operating Systems Chapter 6
Advertisements

Chap 5 Process Scheduling. Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a.
Chapter 5 CPU Scheduling. CPU Scheduling Topics: Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Operating Systems CPU Scheduling. Agenda for Today What is Scheduler and its types Short-term scheduler Dispatcher Reasons for invoking scheduler Optimization.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
CS 311 – Lecture 23 Outline Kernel – Process subsystem Process scheduling Scheduling algorithms User mode and kernel mode Lecture 231CS Operating.
Scheduling in Batch Systems
02/04/2008CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5-CPU Scheduling
Modified from Silberschatz, Galvin and Gagne ©2009 Lecture 8 Chapter 5: CPU Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Basic Concepts Maximum CPU utilization.
Chapter 6: CPU Scheduling
CS212: OPERATING SYSTEM Lecture 3: Process Scheduling 1.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times.
CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm.
Chapter 5 CPU Scheduling Bernard Chen Spring 2007.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 15 Scheduling Read Ch.
CE Operating Systems Lecture 7 Threads & Introduction to CPU Scheduling.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 11/29/2015 Chapter 6: CPU Scheduling l Basic Concepts l Scheduling Criteria l Scheduling Algorithms l Multiple-Processor Scheduling l Real-Time Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 5: CPU Scheduling Basic.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 5 CPU Scheduling Slide 1 Chapter 5 CPU Scheduling.
6.1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
Purpose of Operating System Part 2 Monil Adhikari.
Chapter 4 CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
1 Module 5: Scheduling CPU Scheduling Scheduling Algorithms Reading: Chapter
1 Lecture 5: CPU Scheduling Operating System Fall 2006.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
CPU Scheduling CSSE 332 Operating Systems Rose-Hulman Institute of Technology.
lecture 5: CPU Scheduling
CPU Scheduling CSSE 332 Operating Systems
Chapter 6: CPU Scheduling
Dan C. Marinescu Office: HEC 439 B. Office hours: M, Wd 3 – 4:30 PM.
EEE Embedded Systems Design Process in Operating Systems 서강대학교 전자공학과
Chapter 5a: CPU Scheduling
Process Scheduling B.Ramamurthy 9/16/2018.
Scheduling (Priority Based)
CPU Scheduling.
Chapter 6: CPU Scheduling
Chapter 6: CPU Scheduling
Process management Information maintained by OS for process management
CPU Scheduling Basic Concepts Scheduling Criteria
CPU Scheduling G.Anuradha
Chapter 6: CPU Scheduling
Module 5: CPU Scheduling
Chapter 5: CPU Scheduling
Operating System Concepts
3: CPU Scheduling Basic Concepts Scheduling Criteria
Chapter5: CPU Scheduling
Chapter 5: CPU Scheduling
Chapter 6: CPU Scheduling
Chapter 5: CPU Scheduling
Chapter 6: CPU Scheduling
Chapter 5: CPU Scheduling
Lecture 2 Part 3 CPU Scheduling
Q:何謂 CPU BURST與 I/O BURST?
Operating System , Fall 2000 EA101 W 9:00-10:00 F 9:00-11:00
Chapter 6: CPU Scheduling
Chapter 5: CPU Scheduling
Module 5: CPU Scheduling
CPU Scheduling: Basic Concepts
Chapter 6: CPU Scheduling
CPU Scheduling.
CPU Scheduling: Basic Concepts
Module 5: CPU Scheduling
Chapter 5: CPU Scheduling
Presentation transcript:

So far…. Firmware identifies hardware devices present OS bootstrap process: uses the list created by firmware and loads driver modules for each detected hardware. Initializes internal data structures (PCB, device queue for each device) Each process can have one or more threads Processes can be in Wait (for resources), Ready (waiting for processor) and Run states. Next: scheduling next process from Wait to Run

Clarification re: multi-threaded process From Lecture 5

From Lecture 4 Local variables are stored in stack Malloc() memory is stored in heap Compilers create and manage these locations. They request a certain amount of stack during program loading from the OS The specific format depends on the program structure (e.g. ELF)

Scheduling basics CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait CPU scheduling depends on the observation that processes cycle between CPU execution and I/O wait.

Histogram of CPU-burst Times Typical CPU-burst duration CPU bursts are short lived

CPU Scheduler Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them CPU scheduling decisions may take place when a process: 1. Switches from running to waiting state (e.g. I/O request) 2. Switches from running to ready state (e.g. Interrupt) 3. Switches from waiting to ready (e.g. I/O completion) 4. Terminates Scheduling under 1 and 4 is non-preemptive (cooperative) All other scheduling is preemptive - have to deal with possibility that operations (system calls) may be incomplete

Dispatcher Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves: switching context switching to user mode jumping to the proper location in the user program to restart that program Dispatch latency – time it takes for the dispatcher to stop one process and start another running Should be as low as possible

Scheduling Criteria CPU utilization (max) – keep the CPU as busy as possible Throughput (max) – # of processes that complete their execution per time unit Turnaround time (min) – amount of time to execute a particular process Waiting time (min) – amount of time a process has been waiting in the ready queue Response time (min) – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment) In typical OS, we optimize each to various degrees depending on what we are optimizing the OS

Optimization criteria Max CPU utilization Max throughput Min turnaround time Min waiting time Min response time Analysis using Gantt chart (illustrates when processes complete)

First-Come, First-Served (FCFS) Scheduling Process Burst Time P1 24 P2 3 P3 3 Suppose that the processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is: Waiting time for P1 = 0; P2 = 24; P3 = 27 Average waiting time: (0 + 24 + 27)/3 = 17 P1 P2 P3 24 27 30

FCFS Scheduling (Cont.) Suppose that the processes arrive in the order P2 , P3 , P1 The Gantt chart for the schedule is: Waiting time for P1 = 6; P2 = 0; P3 = 3 Average waiting time: (6 + 0 + 3)/3 = 3 Much better than previous case Convoy effect short process behind long process P1 P3 P2 6 3 30

Shortest-Job-First (SJR) Scheduling Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time Two schemes: nonpreemptive – once CPU given to the process, it cannot be preempted until completes its CPU burst preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF) SJF is optimal – gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 SJF (non-preemptive) Average waiting time = (0 + 6 + 3 + 7)/4 = 4 P1 P3 P2 7 3 16 P4 8 12

Example of Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 SJF (preemptive) Average waiting time = (9 + 1 + 0 +2)/4 = 3 P1 P3 P2 4 2 11 P4 5 7 16