Translational-Rotational Analogues l Translational Rotational l Displacement x θ Velocity v ω Acceleration a α Force (Torque) F τ Mass (Moment of Inertia) m I Newton’s 2nd Law: ∑F = ma ∑τ = Iα Kinetic Energy (KE) (½)mv2 (½)Iω2 Work (constant F, τ) Fx τθ Momentum mv Iω (Angular Momentum)
Translational-Rotational Connections Velocity: v = rω Acceleration: atan= rα aR = (v2/r) = ω2r Force & Torque: τ = rF Mass (Moment of Inertia): I = ∑(mr2) = cMR2 (c = a unitless number that depends on geometry) Newton’s 2nd Law: ∑F = ma, ∑τ = Iα