Trig Functions: the unit circle approach

Slides:



Advertisements
Similar presentations
Trigonometry Review Find sin(  /4) = cos(  /4) = tan(  /4) = Find sin(  /4) = cos(  /4) = tan(  /4) = csc(  /4) = sec(  /4) = cot(  /4) = csc(
Advertisements

Trigonometry/Precalculus ( R )
2.5 Properties of the Trig Functions
Angle Identities. θsin θcos θtan θ 0010 –π/6–1/2√3/2–√3/3 –π/4–√2/2√2/2–1 –π/3–√3/21/2–√3 –π/2–10Undef –2π/3–√3/2–1/2√3 –3π/4–√2/2 1 –5π/6–1/2–√3/2√3/3.
Section 4.2 Trigonometric Functions: The Unit Circle
14.2 The Circular Functions
Unit 4: Trigonometry Minds On. Unit 4: Trigonometry Minds On AngleSinCosTan.
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
Pg. 362 Homework Pg. 362#56 – 60 Pg. 335#29 – 44, 49, 50 Memorize all identities and angles, etc!! #40
EXAMPLE 1 Evaluate trigonometric functions given a point Let (–4, 3) be a point on the terminal side of an angle θ in standard position. Evaluate the six.
Section 3 – Circular Functions Objective To find the values of the six trigonometric functions of an angle in standard position given a point on the terminal.
Trigonometry Test Review!. DefinitionsGiven PointDetermine Quadrant(s) ConstraintsReference Angles Bonus Question: 5000 pts.
Trigonometry Section 8.4 Simplify trigonometric expressions Reciprocal Relationships sin Θ = cos Θ = tan Θ = csc Θ = sec Θ = cot Θ = Ratio Relationships.
The Unit Circle and Circular Functions Trigonometry Section 3.3.
Do Now  .
Trigonometric Functions of Any Angle
Right Triangle Trigonometry
Trigonometric Functions:Unit Circle
Lesson Objective: Evaluate trig functions.
The Other Trigonometric Functions
Introduction to the Six Trigonometric Functions & the Unit Circle
Section 5.1A Using Fundamental Identities
Trigonometry Review.
Trigonometric Functions: The Unit Circle Section 4.2
Using Fundamental Identities
Evaluating Angles.
Warm Up Use trigonometric identities to simplify: csc ∙tan
Special Angle Values.
Trigonometric Function: The Unit circle
Review 5.1 to 5.3.
Section 5.1: Fundamental Identities
13.6 Circular Functions Objectives:
Lesson 6.5/9.1 Identities & Proofs
Appendix D: Trigonometry
Derivatives of Trig Functions
7.2 – Trigonometric Integrals
Worksheet Key 12/2/ :28 PM 13.3: The Unit Circle.
2. The Unit circle.
Product and Quotient Rules and Higher Order Derivatives
Define General Angles and Radian Measure
10. Writing the equation of trig functions
Trigonometric Functions
Last time… Homework questions?.
Trigonometric Function: The Unit circle
Trigonometric Functions: The Unit Circle (Section 4-2)
47.75⁰ Convert to radians: 230⁰.
Unit 7B Review.
Using Fundamental Identities
Warm-Up: Give the exact values of the following
Lets start with a point. P(x,y) r
Properties of Trig Fcts.
Intro to trig review.
I II III IV Sin & csc are + Sin & csc are + Cos & sec are +
Trigonometric Functions
The Inverse Trig FCTNS Function: y = arcsin x y = arccos x
Math /4.4 – Graphs of the Secant, Cosecant, Tangent, and Cotangent Functions.
Trig. Ratios in a Coordinate System
Evaluating Angles.
Build and Use Unit Circle
4.3 Graphing Other Trig Functions
6.4 - Trig Ratios in the Coordinate Plane
Trig Functions and Graphs
5-4: Trig Identities Name:_________________ Hour: ________
An Introduction to Trig Identities
10. Writing the equation of trig functions
What is your best guess as to how the given function
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
5-3 The Unit Circle.
Quick Integral Speed Quiz.
Given A unit circle with radius = 1, center point at (0,0)
Presentation transcript:

Trig Functions: the unit circle approach Section 5.2

Step 1: Find the Terminal Point (1,0) Step 2: Use the Terminal Point and Trig Functions Rules. Sin 0 = y = 0, csc 0 = und Cos 0 = x = 1, sec 0 = 1 Tan 0 = y/x = 0/1 = 0, cot 0 = und

Step 1: Find the Terminal Point (0, -1) Step 2: Use the Terminal Point and Trig Functions Rules. Sin 3π/2= y = -1, csc 3π/2 = -1 Cos 3π/2 = x = 0, sec 3π/2 = und Tan 3π/2 = y/x = -1/0 = und, cot 3π/2 = 0

[