Dr Seyyed Alireza Moravveji Community Medicine Specialist

Slides:



Advertisements
Similar presentations
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 4. Measuring Averages.
Advertisements

Calculating & Reporting Healthcare Statistics
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
2 Textbook Shavelson, R.J. (1996). Statistical reasoning for the behavioral sciences (3 rd Ed.). Boston: Allyn & Bacon. Supplemental Material Ruiz-Primo,
Lecture 4 Dustin Lueker.  The population distribution for a continuous variable is usually represented by a smooth curve ◦ Like a histogram that gets.
AP Statistics Chapters 0 & 1 Review. Variables fall into two main categories: A categorical, or qualitative, variable places an individual into one of.
Programming in R Describing Univariate and Multivariate data.
Summarizing Scores With Measures of Central Tendency
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
Numerical Descriptive Techniques
Methods for Describing Sets of Data
JDS Special Program: Pre-training1 Basic Statistics 01 Describing Data.
© Copyright McGraw-Hill CHAPTER 3 Data Description.
Statistics Recording the results from our studies.
1 Review Descriptive Statistics –Qualitative (Graphical) –Quantitative (Graphical) –Summation Notation –Qualitative (Numerical) Central Measures (mean,
Descriptive statistics Describing data with numbers: measures of location.
Measures of Central Tendency and Dispersion Preferred measures of central location & dispersion DispersionCentral locationType of Distribution SDMeanNormal.
Created by Tom Wegleitner, Centreville, Virginia Section 2-4 Measures of Center.
Descriptive Statistics
Central Tendency and Variability Chapter 4. Variability In reality – all of statistics can be summed into one statement: – Variability matters. – (and.
Descriptive Statistics1 LSSG Green Belt Training Descriptive Statistics.
Skewness & Kurtosis: Reference
INVESTIGATION 1.
Dr. Serhat Eren 1 CHAPTER 6 NUMERICAL DESCRIPTORS OF DATA.
1 Descriptive Statistics 2-1 Overview 2-2 Summarizing Data with Frequency Tables 2-3 Pictures of Data 2-4 Measures of Center 2-5 Measures of Variation.
Lecture 4 Dustin Lueker.  The population distribution for a continuous variable is usually represented by a smooth curve ◦ Like a histogram that gets.
1 a value at the center or middle of a data set Measures of Center.
Edpsy 511 Exploratory Data Analysis Homework 1: Due 9/19.
CHAPTER 2: Basic Summary Statistics
Chapter 6: Descriptive Statistics. Learning Objectives Describe statistical measures used in descriptive statistics Compute measures of central tendency.
© 1999 Prentice-Hall, Inc. Chap Measures of Central Location Mean, Median, Mode Measures of Variation Range, Variance and Standard Deviation Measures.
Slide 1 Copyright © 2004 Pearson Education, Inc.  Descriptive Statistics summarize or describe the important characteristics of a known set of population.
AP PSYCHOLOGY: UNIT I Introductory Psychology: Statistical Analysis The use of mathematics to organize, summarize and interpret numerical data.
One-Variable Statistics. Descriptive statistics that analyze one characteristic of one sample  Where’s the middle?  How spread out is it?  How do different.
Chapter 3 Numerical Descriptive Measures. 3.1 Measures of central tendency for ungrouped data A measure of central tendency gives the center of a histogram.
Descriptive Statistics ( )
Prof. Eric A. Suess Chapter 3
Exploratory Data Analysis
Analysis of Quantitative Data
Different Types of Data
One-Variable Statistics
Descriptive Statistics
Warm-Up 1..
Statistics.
Summarizing Scores With Measures of Central Tendency
Descriptive Statistics: Presenting and Describing Data
CHAPTER 3 Data Description 9/17/2018 Kasturiarachi.
Numerical Measures: Centrality and Variability
Statistical Reasoning
Description of Data (Summary and Variability measures)
Statistics is the science of conducting studies to collect, organize, summarize, analyze, present, interpret and draw conclusions from data. Table.
Chapter 3 Describing Data Using Numerical Measures
Numerical Descriptive Measures
Descriptive and inferential statistics. Confidence interval
STA 291 Spring 2008 Lecture 5 Dustin Lueker.
Descriptive Statistics
Drill {A, B, B, C, C, E, C, C, C, B, A, A, E, E, D, D, A, B, B, C}
STA 291 Spring 2008 Lecture 5 Dustin Lueker.
Numerical Descriptive Measures
STA 291 Summer 2008 Lecture 4 Dustin Lueker.
Means & Medians.
Numerical Descriptive Measures
Descriptive Statistics Healey Chapters 3 and 4 (1e) or Ch. 3 (2/3e)
Summary (Week 1) Categorical vs. Quantitative Variables
Summary (Week 1) Categorical vs. Quantitative Variables
MBA 510 Lecture 2 Spring 2013 Dr. Tonya Balan 4/20/2019.
CHAPTER 2: Basic Summary Statistics
STA 291 Spring 2008 Lecture 4 Dustin Lueker.
Numerical Descriptive Measures
Presentation transcript:

Dr Seyyed Alireza Moravveji Community Medicine Specialist بسم الله الرحمن الرحيم Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist آمار توصيفي جمع آوري، تنظيم و خلاصه كردن داده‌ها درك اطلاعات قبل از آناليز (سازماندهي و خلاصه كردن) بسيار مهم است. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist خلاصه كردن داده‌ها رسم جدول توصیفی تحلیلی رسم نمودار محاسبه شاخصهای آماری تذکر مهم: هر نوع روش انتخابی برای پردازش اطلاعات بايد دو شرط زير را دارا باشد: 1- صحت انتقال اطلاعات 2- سرعت انتقال اطلاعات Dr Seyyed Alireza Moravveji Community Medicine Specialist

جدول گزارش نتايج بيشتر در حجم كمتر جدول گزارش نتايج بيشتر در حجم كمتر انواع جدول يك بعدي دوبعدي سه بعدي Dr Seyyed Alireza Moravveji Community Medicine Specialist

جدول يك بعدي تنها اطلاعات توصيفي يك متغير بيان مي‌شود جدول يك بعدي تنها اطلاعات توصيفي يك متغير بيان مي‌شود 1 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist جدول 1: توزيع فراواني افراد برحسب استعمال سيگار در شهرستان کاشان در سال 1389 استعمال سيگار فراواني مطلق فراواني نسبي فراواني تجمعي سيگار مي‌كشد .......... ........... ............ سيگار نمي‌كشد جمع Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist جدول دو بعدي اطلاعات مربوط به دو متغير بيان مي‌گردد و مي‌توان به وجود يا عدم وجود ارتباط بين دو متغير پي برد. 2 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist جدول 2: توزيع فراواني افراد برحسب استعمال سيگار به تفكيك جنسيت در شهرستان کاشان در سال 1389 زن مرد جنس سيگار ........... مي كشد نمي كشد جمع Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

جایگاه جمع در جدول دو بعدی کجاست؟ کل سالم بيمار درصد تعداد سن 175 15 9-0 90 10 19-10 5 29-20 ..... ...... پاسخ: در جهت متغیر مستقل Dr Seyyed Alireza Moravveji Community Medicine Specialist

جدول سه بعدي بيان ارتباط 3 متغير جدول سه بعدي بيان ارتباط 3 متغير 3 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist جدول 3: توزيع فراواني افراد بر حسب استعمال سيگار به تفكيك سن و جنس در شهرستان کاشان در سال 1389 زن مرد جنس 50 > 50 < سن سيگار .......... مي كشد نمي كشد جمع Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

نمودار يكي ديگر از روشهاي خلاصه سازي اطلاعات است. انواع نمودار نمودار ميله‌اي (نرده اي، ستوني) (Bar Chart) نمودار دايره‌اي (كلوچه‌اي) (Pie Chart) نمودار چندگوش (Polygon Diagram) نمودار هيستوگرام Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist 1- نمودار ستوني : برای نمایش فراواني متغيرهاي كيفي (اسمي و رتبه‌اي) *ارتفاع ستونها مهم است 2- نمودار دايره اي : برای نمایش فراواني متغيرهاي كيفي (اسمي و رتبه‌اي) Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist 90 27.4 20.4 20.4 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist 3- نمودار پلی گون (چندگوش): برای نمایش داده هاي كمي گسسته صفت روي محور طولها و فراواني متناظر آن روي محور عرضها Dr Seyyed Alireza Moravveji Community Medicine Specialist

روشهای پردازش اطلاعات(ادامه) Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist 4- نمودار هيستوگرام : برای نمایش داده هاي كمي پيوسته محور عمودي فراواني هرگروه از متغير كمي مي‌باشد. قاعده ستونها مي‌تواند مساوي انتخاب نشود و سطح زير ستون متناسب با فراواني آن گروه است. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

روشهای پردازش اطلاعات(ادامه) Scatter-gram Weight loss (Kg) Initial weight (Kg) Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

روشهای پردازش اطلاعات(ادامه) Mean Blood Pressure (mmHg) Time in days Polythiazide 8 mg Figure …: Mean blood pressure for a group of subjects before and during daily administration of polythiazide with and without sodium replacement.

روشهای پردازش اطلاعات(ادامه) Mean Blood Pressure (mmHg) Time in days Polythiazide 8 mg Figure …: Mean blood pressure for a group of subjects before and during daily administration of polythiazide with and without sodium replacement.

Dr Seyyed Alireza Moravveji Community Medicine Specialist شاخصهای آماری: شاخص: عدد يا نسبتي است كه جهت خلاصه كردن وقايع استخراج مي شود و بعنوان مشخص كننده آن وقايع در زمان معين و يا براي مقايسه آنها در زمانهاي مختلف بكار مي رود . Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist شاخص مركزي : عددي كه اكثر داده ها يا نمونه هاي جامعه حول آن قرار دارند. انواع: ميانگين ميانه نما Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist شاخص پراكندگي: مشخص مي‌كند نمونه ها چقدر از شاخص مركزي فاصله دارند . (تنوع مقادير داده ها: اگر مقادير به هم نزديك باشند پراكندگي كمتر است و بالعكس) دامنه Range ميانگين انحرافات (MD) Mean Deviation واریانس (پراش) Variance انحراف معيار Standard Deviation (Sd) Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist شاخصهاي مركزي : الف) ميانگين حسابي:مشهورترين شاخص مركزي است(معدل) mean = Xi = مقدار هريك از متغيرهاي تصادفي N = تعداد متغيرها ميانگين نمونه با نماد x نشان داده مي شود . ميانگين جامعه با نماد µ نشان داده مي شود . ∑ni=1 xi N Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist Mean Another name for average. If describing a population, denoted as , the greek letter “mu”. If describing a sample, denoted as X , called “x-bar”. Appropriate for describing measurement data. Seriously affected by unusual values called “outliers”. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Calculating Sample Mean Formula: That is, add up all of the data points and divide by the number of data points. Data (# of classes skipped): 2 8 3 4 1 Sample Mean = (2+8+3+4+1)/5 = 3.6 Do not round! Mean need not be a whole number.

Dr Seyyed Alireza Moravveji Community Medicine Specialist ب) ميانه : برابر است با مقداري كه نيمي از افراد، از نظر داشتن آن متغير، از آن بزرگتر و نيم ديگر از آن كوچكتر باشند. کاربرد میانه:در مواقعی كه توزيع جامعه نرمال نباشد. در موارد خاص مثلاً زماني كه مي‌خواهيم سطح درآمد و يا سطح مصرف را در جامعه اي كه اختلاف طبقاتي زياد است (به گونه‌اي كه عده اي درآمد كلان و اكثريت درآمد محدود دارند) تعيين كنيم، ميانه شاخص مناسبتري خواهد بود. چون ميانه درآمدي را كه نصف مردم كمتر و نيم ديگر بيشتر از آن را دارند مشخص مي كند ولي ميانگين چنانكه درآمدهاي كلان مقادير بسيار افراطي را شامل شود نمي‌تواند شاخص مناسبي از وضعيت درآمد باشد Dr Seyyed Alireza Moravveji Community Medicine Specialist

مثال مي خواهيم ميانه 99 نفر را از نظر قد پيدا كنيم نفر وسط از هر گروه از فرمول تعداد افراد n + 1 2 به ترتيب صعودي يا نزولي صف مي‌كنيم. از اول تا آخر صف تا نفر پنجاهم شمرده و قد نفر پنجاهم، ميانه قد افراد خواهد بود. اگر تعداد مقادير زوج باشد ميانگين دو مقدار وسط را بعنوان ميانه انتخاب مي‌كنيم. 1+99 2 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist مثال ميانه 6 عدد : 2و7و13و21و35و39 =17 21+13 2 ميانه از مقادير افراطي (outlier)تأثير پذير نيست (برعكس ميانگين) ولي كاربرد ميانگين در تعبير و تفسير اطلاعات و انجام آزمونهاي آماري قابل اعتمادتر است. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist Median Another name for 50th percentile. Appropriate for describing measurement data. “Robust to outliers,” that is, not affected much by unusual values. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Calculating Sample Median Order data from smallest to largest. If odd number of data points, the median is the middle value. Data (# of classes skipped): 2 8 3 4 1 Ordered Data: 1 2 3 4 8 Median Dr Seyyed Alireza Moravveji Community Medicine Specialist

Calculating Sample Median Order data from smallest to largest. If even number of data points, the median is the average of the two middle values. Data (# of classes skipped): 2 8 3 4 1 8 Ordered Data: 1 2 3 4 8 8 Median = (3+4)/2 = 3.5 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist ج) نما: عبارت است از داده يا داده هايي كه بيشترين فراواني را دارند، بعبارتي ديگر صفتي كه نسبت به صفات ديگر، افراد بيشتري داراي آن باشند را نما گويند. اگر همه مقادير با هم متفاوت باشند مجموعه، شاخص نما ندارد. ممكن است يك مجموعه بيش از يك نما داشته باشد. مورد استفاده نما كمتر از دو شاخص قبلي است و در اپيدميولوژي از نما مثلاً براي مشخص كردن سني كه در آن يك بيماري بيشترين شيوع را دارد استفاده مي شود . Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist Source: CSAP’s Data Pathways Dr Seyyed Alireza Moravveji Community Medicine Specialist

Choosing Appropriate Measure of Location If data are symmetric, the mean, median, and mode will be approximately the same. If data are multimodal, report the mean, median and/or mode for each subgroup. If data are skewed, report the median. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist

Central Tendencies and Distribution Shape It is possible to represent the CT (whatever type) on the FD polygon by bisecting the curve with a straight line to represent your mean median or mode. With a ND (symmetrical, bell-shaped curve) the mean, median , and mode will all have the same value and will be represented by the exact centre of the D. For symmetrical D the mean and median will always be exactly in the centre, and will always be the same value. On skewed D shown here the position of the 3 measures differs slightly. The mode will always be at the highest point of the curve (representing the most frequent score); the median will be exactly in the middle of the D (the middle position). On + skew (the L graph) where the majority of scores are at the lower end of the scale, this means that the mode will be the lowest value, followed by the median. Then mean score will be affected by the few extreme higher scores and so will be the highest values of the 3 measures of CT. On the –skew where most of the scores are at the higher end of the scale, the opposite pattern is observed. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Different Shapes of Distributions Source: http://faculty.vassar.edu/lowry/f0204.gif Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist شاخصهاي پراكندگي Dr Seyyed Alireza Moravveji Community Medicine Specialist

Describing Variability Describes in an exact quantitative measure, how spread out/clustered together the scores are Variability is usually defined in terms of distance How far apart scores are from each other How far apart scores are from the mean How representative a score is of the data set as a whole So far we have considered ways of describing the shape of a D and its central point. There is one other important characteristic of a data distribution set: how spread out the data scores are: whether they are clustered closely together or not. This would be a measure of variability for our data (read Last point : if an individual score is close to the mean or not ) The diagram shows how V can be important: these two distributions have the same shape: they are both symmetrical, and ND. They have the same mean value. They don’t however have the same V. Say these are graphs showing IQ from two different samples of people. In the L graph the spread of the scores is much smaller than the R hand graph: so for the L hand graph the IQs are clustered together over a smaller spread from say 80 -115, while the R hand graph the IQs are spread out over a much wider range: say 50-150 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist Source: Scianta.com Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist Source: www.wilderdom.com/.../L2-1UnderstandingIQ.html Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist الف) دامنه: تفاوت بين كوچكترين و بزرگترين مقدار داده‌ها (R=Xmax - Xmin) چون در محاسبه دامنه تنها از كوچكترين و بزرگترين مقدار استفاده مي شود نمي تواند به نحو مطلوبي گوياي پراكندگي صفت باشد: مثال : دو گروه عدد 18و10و10و10و2 X = 10 R= 16 18و16و10و4و2 ولي پراكندگي سري دوم اعداد بيشتر از سري اول است. Dr Seyyed Alireza Moravveji Community Medicine Specialist

سن كودكان بستري در بخش اطفال 7، 6 ، 5 ،4 ،3 ب) ميانگين انحرافات (MD): متوسط قدر مطلق انحرافات از ميانگين يا متوسط انحراف خطي است . ∑ |x - xi| N مثال : سن كودكان بستري در بخش اطفال 7، 6 ، 5 ،4 ،3 X=5 MD= = 1/2 مفهوم عدد 2/1 اين است كه اين 5 عدد از ميانگين خود بطور متوسط 2/1 فاصله دارند. |3-5|+|4-5|+|5-5|+|6-5|+|7-5| 5 Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist ج) پراش(Variance) : چون در محاسبه ميانگين انحرافات از قدر مطلق اختلاف استفاده شده و انجام عمليات جبري روي قدر مطلق خالي از اشكال نيست به منظور رفع اين نقيصه و همچنين تأثير بيشتر اعداد دور از ميانگين و تأثير كمتر اعداد حول ميانگين هريك از عبارات را مجذور مي كنيم . (ميانگين مجذور انحرافات) = 2 δ ∑ (x – xi)2 N Dr Seyyed Alireza Moravveji Community Medicine Specialist

د) انحراف معيار (جذر واریانس): بهترين شاخص پراكندگي است. د) انحراف معيار (جذر واریانس): بهترين شاخص پراكندگي است. چون واريانس بصورت مربع يا مجذور است براي رفع اين اشكال از جذر واريانس استفاده مي شود . SD= √δ2 Dr Seyyed Alireza Moravveji Community Medicine Specialist

ﻫ) ضريب تغييرات (CV): براي مقايسه پراكندگي دوصفت با دو واحد متفاوت مثلاً مقايسه پراكندگي توزيع افراد از نظر فشارخون (mmHg) و وزن بدن (Kg) اگر انحراف معيار آنها به ترتيب 20 و 50 باشد نمي‌توان نتيجه گرفت كه پراكندگي وزن در جامعه بيشتر از فشارخون است. Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist براي رفع اين مشكل و قابل مقايسه شدن از نسبت انحراف معیار به میانگین به صورت درصد استفاده مي‌شود و حاصل تقسيم آنها بدون واحد خواهد بود. CV = × 100 SD X Dr Seyyed Alireza Moravveji Community Medicine Specialist

Dr Seyyed Alireza Moravveji Community Medicine Specialist Bar chartميله اي) ( كيفي يك متغير ( دايره اي)Pie chart نمودار توصيفي (بافت نگار)Histogram كمي Area Clustered Bar / Pie كيفي - كيفي آمار پزشكي بيش از يك متغير (دو متغير) Box Plot كيفي - كمي Error Bar جدول Scatter plot كمي - كمي عدد Dr Seyyed Alireza Moravveji Community Medicine Specialist تحليلي

Dr Seyyed Alireza Moravveji Community Medicine Specialist (سهم)Ratio كيفي (نسبت) Proportion Frequency- Percent عدد + زمان (ميزان)Rate - كمي Dr Seyyed Alireza Moravveji Community Medicine Specialist

(Coefficient of Variation ) ميانگين Mean شاخص هاي گرايش مركزي Central Tendency Determinants ميانه Median نما Mode شايعترين فراواني عدد كمي دامنه – بازه –Range ميانگين انحرافات (Mean Deviation) واريانس (Variance) شاخص هاي پراكندگي Dispersion Determinants انحراف معيار(Standard Deviation) خطاي معيار(Standard Error) ضريب تغييرات (Coefficient of Variation ) Dr Seyyed Alireza Moravveji Community Medicine Specialist

با تشكر از توجه شما عزيزان Dr Seyyed Alireza Moravveji Community Medicine Specialist