E166 - LEPOL - Low Energy Positron Polarimetry for the ILC

Slides:



Advertisements
Similar presentations
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
Advertisements

The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator.
Photon Collimation For The ILC Positron Target Lei Zang The University of Liverpool Cockcroft Institute 24 th March 2007.
Fast and Precise Beam Energy Measurement at the International Linear Collider Michele Viti.
Using Realistic Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
K.T. McDonald DoE Review Aug. 10, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
EPAC June 2003 The EPAC June 2003 Questions 1. Clarify the Motivation for the Proposal. 2. How to ensure the e+ polarimeter works right away? 3. What is.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
K. LaihemPrinceton meeting Princeton meeting Status Report Simulation studies E166 experiment Karim Laihem.
E166 Collaboration J.C. Sheppard SLAC, October, 2003 E166 Background Test Simulations: Overview-what do we need J. C. Sheppard.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
K.T. McDonald DoE Review July 29, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
20 March 2005Ken Moffeit LCWS1 Highlights from the MDI workshop Spin Rotation System for 2 IR’s Downstream polarimetry Ken Moffeit.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
A study of systematic uncertainties of Compton e-detector at JLab, Hall C and its cross calibration against Moller polarimeter APS April Meeting 2014 Amrendra.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
1 The Longitudinal Polarimeter at HERA Electron Polarization at HERA Laser System & Calorimeter Statistical and Systematic Precision Laser Cavity Project.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.
Polarisation monitoring Sabine Riemann, Andreas Schälicke, Andriy Ushakov (DESY) Positron Source Group Meeting, October, 2009 University of Durham.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
SLAC, September 25, 2009 Searching for a U -boson with a positron beam Bogdan Wojtsekhowski Thomas Jefferson National Accelerator Facility  The light.
ILC MDI workshop January 6-8, 2004 PEP-II IR M. Sullivan 1 Interaction Region of PEP-II M. Sullivan for the ILC MDI workshop January 6-8, 2005.
E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
Review of τ -mass measurements at e + e - - colliders Yury Tikhonov (Budker INP) Contents  Introduction  Current status of τ-mass measurements and μτ.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
CsI(Tl) Calorimeter and status of the E166 experiment E166 experiment CsI ( Tl) calorimeter construction. Test beam results vs. Geant4 simulation Schedules.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Positron production rate vs incident electron beam energy for a tungsten target
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Polarized Electrons for Polarized Positrons
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
Progress with Spin Tracking in GEANT4
CLIC Undulator Option for Polarised Positrons
Helical Undulator Insertion Device The heLiCal collaboration
Status Report on E-166 Undulator-Based Production of Polarized Positrons K.T. McDonald Princeton University EPAC Meeting SLAC, November 15, 2003.
Capture and Transmission of polarized positrons from a Compton Scheme
Polarized Positrons at Jefferson Lab
ILC Baseline Design: Physics with Polarized Positrons
SuperB Workshop Frascati March 16, 2006
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

E166 - LEPOL - Low Energy Positron Polarimetry for the ILC Ralph Dollan, HU Berlin

Outline E166 LEPOL scheme the helical undulator transmission polarimetry setup, analysis, simulation LEPOL purpose options simulation 03/12/18 R. Dollan

Outline E166 LEPOL scheme the helical undulator transmission polarimetry setup, analysis, simulation LEPOL purpose options simulation Polarized GEANT4 03/12/18 R. Dollan

The International Linear Collider (ILC) Center of mass energy: 500 GeV Luminosity: L= 2·1034 cm-2s-1 Length: ~ 31 km Polarized beams: P(e-) > 80%, P(e+) ~ 30%(60%†) †upgrade Polarization of both beams is advantageous f. SM- and non-SM-physics (eff. luminosity, signal/background in SM processes …) http://www.ippp.dur.ac.uk/~gudrid/source/ 03/12/18 R. Dollan

E166 Task: proof the possibility, to produce polarized positrons using a helical undulator ! 1 m long helical undulator produces circular polarized photons conversion of circularly polarized photons to longitudinally polarized positrons in thin W-target measurement of polarization of photons and positrons by Photon transmission method main parts: undulator, production target, spectrometer, e+/γ diagnostics 03/12/18 R. Dollan

The E166 Undulator wound left handed Design parameter: length 1m period 2.54 mm aperture 0.889 mm on axis field 0.71 T K 0.17 Eγ (1st harmonic) 7.8 MeV @ Ebeam= 46.6 GeV wound left handed 03/12/18 R. Dollan

Photon Energy and Polarization (K~0.17) Ecutoff (1st harmonic) : 7.8 MeV Undulator Photon energy spectrum Undulator Photon degree of polarization 03/12/18 R. Dollan

Expected Positron Spectrum and Polarization positron generation in a 0.5 X0 W-target for undulator design parameters: 03/12/18 R. Dollan

Compton Transmission Polarimetry Detector Magnetized Iron Absorber Reconversion Target e+ γ with Transmission Asymmetry Photon Polarisation Pe(Fe) = 6.9 ± 0.2 % Analyzing Power 03/12/18 R. Dollan

The E166 Polarimeter Edep(-) - Edep(+) Measure Edep(-) and Edep(+) Magnetized Iron (-/+) Edep(-) - Edep(+) Measure Edep(-) and Edep(+) -> Asymetry = Edep(-) + Edep(+) 03/12/18 R. Dollan

E-166 in the FFTB beam energy Ebeam = 46.6 GeV electrons/pulse Ne- ~1010 beam size σ = 40 µm rep. rate 10 Hz 03/12/18 R. Dollan

Details of the setup 03/12/18 R. Dollan

The setup 03/12/18 R. Dollan

Positron data analysis 2 run periods (june and september 2005) 6 spectrometer settings (6 e+ energy points) > 8 million triggers ~ 3000 cycles Analysis steps: background subtraction normalization of the energy deposition cyclepairing asymmetry determination Bg Bg + signal 03/12/18 R. Dollan

Positron data analysis 2 run periods (june and september 2005) 6 spectrometer settings (6 e+ energy points) > 8 million triggers ~ 3000 cycles Analysis steps: background subtraction normalization of the energy deposition cyclepairing asymmetry determination Bg Bg + signal 03/12/18 R. Dollan

The asymmetries preliminary 03/12/18 R. Dollan

The asymmetries preliminary Positron Polarization [%] ? We have to transfer the asymmetry into polarization and the spectrometer current into energy of the positrons/electrons Positron energy [MeV] ? 03/12/18 R. Dollan

The asymmetries Detailed (polarized) simulation needed !!! preliminary Positron Polarization [%] ? Detailed (polarized) simulation needed !!! We have to transfer the asymmetry into polarization and the spectrometer current into energy of the positrons/electrons Positron energy [MeV] ? 03/12/18 R. Dollan

Polarization dependent processes in GEANT4 Conversion Target G4ePolarizedBremsstrahlung Polarized Photons Undulator G4ePolarizedIonisation (G4PolarizedMollerBhabhaModel) G4PolarizedGammaConversion e+ With the use of: G4StokesVector G4PolarizationHelper G4PolarizationManager G4PolarizationMessenger G4PolarizedCompton Vacuum chamber e+ Analyzing Magnet ReConversion Target e+ CsI e+ e+ G4eplusPolarizedAnnihilation 03/12/18 R. Dollan

Spectrometer calibration Calculated and measured field map were the input for the G4 Simulation 03/12/18 R. Dollan

Positron production Target Input: undulator spectrum Polarization Transfer: G4PolarizedGammaConversion High energetic positrons carry high degree of polarization e- e- e+ e- e+ 0.25 X0 W long. pol. e+e- pairs circ. pol. photons 03/12/18 R. Dollan

Simulation of the Polarimeter Analyzing Power N e+ = 104 E e+ = 7 MeV P e+ = ±100% ±100% 03/12/18 R. Dollan

The asymmetries preliminary Positron Polarization [%] ? Positron energy [MeV] ? 03/12/18 R. Dollan

The asymmetries preliminary preliminary 03/12/18 R. Dollan

The asymmetries preliminary preliminary Still ongoing: Understanding of systematics Detailed simulation studies -> Polarization values 03/12/18 R. Dollan

The asymmetries preliminary preliminary Still ongoing: Measured also photon asymmetries in the expected range: exp. Results expected from simulation Photon Calorimeter : 3.67 % ± 0.071 % 3.22 % Aerogel Counter : 3.31 % ± 0.12 % 3.54 % preliminary preliminary Still ongoing: Understanding of systematics Detailed simulation studies -> Polarization values 03/12/18 R. Dollan

E166 Summary E-166 produced data with good quality and has shown, that the helical undulator works – polarized positrons have been measured The E166 asymmetries are in the expected range The E166 simulation made polarized processes in GEANT4 necessary – they have been implemented Interpretation of the data and publication in progress 03/12/18 R. Dollan

Low Energy Positron Polarimeter Measurement of positron polarization at the source -> Optimization of the positron beam polarization/intensity -> Control of polarization transport Beam Parameters e+ / bunch Ne+ 2·1010 bunches / pulse 2820 Rep. Rate R 5 Hz Energy E 30 – 5000 MeV Energy spread ΔE/E 10 % Normalized emittance ε* ~ 3.6 cm rad Beam size σx,y ~ 1 cm Desired: non-destructive method with accuracy at percent level ~125 MeV ~400 MeV 03/12/18 R. Dollan

Polarization measurement -> measure Asymmetries ! The challenges Polarization measurement -> measure Asymmetries ! Find for the low energy range a process with sensitivity to longitudinal polarization of positrons (electrons) good signal/background ratio significant asymmetry Desired: non-destructive good reliability easy to handle fast (short measuring time) ~125 MeV ~400 MeV 03/12/18 R. Dollan

Available Processes Laser Compton Scattering (ex.: SLC, HERA) High intensity Laser on low emittance beam Only after Damping Rings (Intensity, Energy) High precision Bhabha/Møller (ex: SLAC, JLAB, VEPP-3) Thin magnetized Target Suitable for desired energy range Compton Transmission (ex.: E166, KEK-ATF Pol. Experiment) Beam absorbed in thick target Very low energy ( < 100 MeV) Mott Transverse polarized positrons, high background Synchrotron radiation (ex.: VEPP-4 storage ring) Transverse polarization Near/in damping ring ? Low signal – Asymmetry < 10-3 03/12/18 R. Dollan

Compton Transmission Method Destructive ! Polarized positrons reconverted into polarized gammas Polarization dependent transmission due to Compton scattering in magnetized Iron Working point: Ee+ < 100 MeV ideal after capture section O(~30 MeV) Dimensions O(1m) Experiences from E166 Thick Target (1 to 3 X0) with high energy deposition O(~KW) Small asymmetries O(<1%) Example: Ebeam 30 MeV, Pe-=7.92%, Target: 2X0 W, Absorber 15cm Fe -> A(Pe+=30%) ~ 0.4% A(Pe+=60%) ~ 0.8% Detector Magnetized Iron Absorber Reconversion Target e+ γ 03/12/18 R. Dollan

Bhabha Polarimetry Example: Pe+= 80%, Pe-= 7% Amax ~ 4.4 % As Møller Polarimeter already used (SLAC, VEPP-3) Non-destructive ! Working point: After pre-acceleration 125 MeV – 400 MeV First design studies done for 200 MeV / 400 MeV Cross section: Theor. maximal asymmetry at 90°(CMS) ~ 7/9 ≈ 78 % Example: Pe+= 80%, Pe-= 7% Amax ~ 4.4 % 03/12/18 R. Dollan

Bhabha Polarimeter e+ Polarized GEANT4 Measures Asymmetry of scattered particles (e+,e-,(γ)) of two magnetization states of the target Mask or shielding selects angular range with max. asymmetry Spectrometer -> particle separation, energy selection e+ Magnetized Iron Detector 6 m Polarized GEANT4 03/12/18 R. Dollan

Bhabha Polarimeter: Target Magnetized thin IronTarget Heating of the target -> Magnetization decreases Simulation for 30 µm Cooling by radiation TC (Fe) = 1039 K; melting point 1808 K Ongoing considerations on target layout ΔT -> ΔM -> ΔP -> ΔA Magnetic field (tilted or not) Cooling in real Monitoring of magnetization Target temperature vs. time Magnetisation vs. Temperature 03/12/18 R. Dollan

Example: e- distribution and e- asymmetry 30 μm magnetized Fe-Foil Ebeam : 400 MeV (10 % spread) Ang. Spread : 0.5º Pz(Target) = -100% e+,e-,γ e+ asymmetry (analyzing power) Pz(Target) = +100% ang. range of interest: 0.03 – 0.1 rad --> Asymmetry in the ang. range : ~50 % 03/12/18 R. Dollan

Geometry Detector plane Hom. B-field: (req.: BdL ~ 0.1 Tm) mask O(~5m) 30 μm Fe Target, rtarget= 2.5 cm O(~5m) ang. range 0.03 – 0.1 rad room for 15 cm beampipe + gap 03/12/18 R. Dollan

Towards a Geometry for a LEPOL Mask Detector plane Mag. field Target Questions to answer: detector area with best significance ? detector type ? mask dimensions, material ? magnet dimensions ? 03/12/18 R. Dollan

Detector plane, int. B-field 0.1 Tm e- distribution e- distribution asymmetry (analyzing power) (beam: 1*109 e+, E: 400 MeV (10 % spread), ang spread: 0.5º 03/12/18 R. Dollan

LEPOL Summary Present ongoing work: Detailed design studies for Bhabha polarimeter: Layout Target Implementation into beam line Compton transmission performance studies Simulation studies of Laser Compton Method (Minsk, TelAviv) Polarimetry at the positron source is possible necessary but not easy The LEPOL Collaboration: Karim Laihem, Sabine Riemann, Andreas Schälicke, Peter Schüler, Andriy Ushakov, DESY R.D., Thomas Lohse, HU Berlin Pavel Starovoitov, Minsk Gideon Alexander, TelAviv 03/12/18 R. Dollan

Summary of the summaries There is progress on both fields, E166 and LEPOL In addition -> “polarized” GEANT4 - not only as side effect Thank you for your attention ! 03/12/18 R. Dollan