Analysis of a gamma spectrum: -Identification and evaluation Henrik Ramebäck (FOI) Trygve Bjerk (IFE) Presentation@GAMMASPEC2016
The spectrum Some significant peaks: 129 keV 414 keV 375 keV 60 keV
The low E region 51.62 keV 45.24 keV 38.66 keV
Identification Eg (keV) Possible ID 413.71 Pu-239 375.05 129.30 38.66 51.62 45.24 Pu-240 59.54 Am-241 Also 662 keV: Am-241 or Cs-137? The major part of the peak seems to be from Cs-137
Activities From the calibration data the efficiencies can be calculated, and thereafter the activities… -APu239=(10.55±0.60) kBq (using the 129.3 keV line) -AAm241=(134.2±7.0) Bq (using the 59.5 keV line) Am-241: What about U-237 in Pu materials? Pu-241 decay to either Am-241 (beta minus, 99.99756%) or to U-237 (alpha, 0.00244%). Both daughters go to Np-237 Many gamma energies in common! Some unique though… So, how much comes from Am-241 in a specific peak?
U-237 in Pu materials 59.54 keV: >99% after about 1.3 y
Isotopic composition (Low E region) Eg (keV) Possible ID 38.66 Pu-239 45.24 Pu-240 51.62 Possible to evaluate the 239/240 isotope ratio…
Isotopic composition 239Pu: 38.66 keV (0.01047%) and 51.62 keV (0.02694%) 240Pu: 45.24 keV (0.0462%) Internal response via 38.66 keV and 51.62 keV: InterpolationThe response@45.24 keV!!! Activity ratio: 240/239=(NA45keV/(Eff45keV·I45keV))/(NA52keV/(Eff52keV·I52keV)) Isotope ratio, R240/239=Activity ratio·l240/l239 Abundance, f240=R240/239/(1+R240/239); f239=1/(1+R240/239) (If we only consider 240Pu och 239Pu) [In general: fi=Ri/(SRi), OBS: Ri for the ’reference isotope’=1, i.e. R239/239=1, since R239/239=n239/n239] (98.71±0.10)% 239Pu, (1.29±0.10)% 240Pu Super grade Pu (SGPu), i.e. very low burn-up… [Assuming the same response at 45.24 keV as at 51.62 keVabout 11% error!]
Isotopic composition (alternative approach) Isotopic composition using the calibration data: Efficiencies at 51.62 and 45.24 keV, peak areas and photon emission probabilities: f240=(1.11±0.10)% [A small residual difference between the two methods…]