Data Mining Anomaly/Outlier Detection

Slides:



Advertisements
Similar presentations
Hierarchical Clustering, DBSCAN The EM Algorithm
Advertisements

Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly Detection
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Minqi Zhou © Tan,Steinbach, Kumar Introduction to Data Mining.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ What is Cluster Analysis? l Finding groups of objects such that the objects in a group will.
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Cluster Analysis: Advanced Concepts and Algorithms Figures for Chapter 9 Introduction.
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Cluster Analysis: Basic Concepts and Algorithms Figures for Chapter 8 Introduction.
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Anomaly Detection Figures for Chapter 10 Introduction to Data Mining by Tan,
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Anomaly Detection brief review of my prospectus Ziba Rostamian CS590 – Winter 2008.
© Tan,Steinbach, Kumar Introduction to Data Mining 1/17/ Data Mining Classification: Alternative Techniques Figures for Chapter 5 Introduction to.
Anomaly Detection. Anomaly/Outlier Detection  What are anomalies/outliers? The set of data points that are considerably different than the remainder.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by.
Inferences About Process Quality
Jeff Howbert Introduction to Machine Learning Winter Anomaly Detection Some slides taken or adapted from: “Anomaly Detection: A Tutorial” Arindam.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Outlier Detection Using k-Nearest Neighbour Graph Ville Hautamäki, Ismo Kärkkäinen and Pasi Fränti Department of Computer Science University of Joensuu,
Introduction to Analytical Chemistry
N. GagunashviliRAVEN Workshop Heidelberg Nikolai Gagunashvili (University of Akureyri, Iceland) Data mining methods in RAVEN network.
Anomaly Detection in Data Mining. Hybrid Approach between Filtering- and-refinement and DBSCAN Eng. Ştefan-Iulian Handra Prof. Dr. Eng. Horia Cioc ârlie.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly Detection © Tan,Steinbach, Kumar Introduction to Data Mining.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly/Outlier Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction.
Lecture 7: Outlier Detection Introduction to Data Mining Yunming Ye Department of Computer Science Shenzhen Graduate School Harbin Institute of Technology.
1 Data Mining: Concepts and Techniques (3 rd ed.) — Chapter 12 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign.
COMP5331 Outlier Prepared by Raymond Wong Presented by Raymond Wong
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Chapter 10 The t Test for Two Independent Samples.
Data Mining Anomaly Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to.
Data Mining Anomaly/Outlier Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar.
Chapter 20 Classification and Estimation Classification – Feature selection Good feature have four characteristics: –Discrimination. Features.
Anomaly Detection.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Cluster Analysis This lecture node is modified based on Lecture Notes for Chapter.
Anomaly Detection Carolina Ruiz Department of Computer Science WPI Slides based on Chapter 10 of “Introduction to Data Mining” textbook by Tan, Steinbach,
1 CSE 881: Data Mining Lecture 22: Anomaly Detection.
Clustering (2) Center-based algorithms Fuzzy k-means Density-based algorithms ( DBSCAN as an example ) Evaluation of clustering results Figures and equations.
Anomaly Detection Nathan Dautenhahn CS 598 Class Lecture March 3, 2011.
Deep Feedforward Networks
LECTURE 09: BAYESIAN ESTIMATION (Cont.)
3. The X and Y samples are independent of one another.
Chapter 4. Inference about Process Quality
Ch8: Nonparametric Methods
Inference for the mean vector
Data Mining: Concepts and Techniques (3rd ed.) — Chapter 12 —
Chapter 5 Sampling Distributions
Chapter 5 Sampling Distributions
Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Lecture Notes for Chapter 9 Introduction to Data Mining, 2nd Edition
Data Mining Classification: Alternative Techniques
Data Mining Anomaly Detection
Outlier Discovery/Anomaly Detection
Critical Issues with Respect to Clustering
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Lecture 14: Anomaly Detection
LECTURE 21: CLUSTERING Objectives: Mixture Densities Maximum Likelihood Estimates Application to Gaussian Mixture Models k-Means Clustering Fuzzy k-Means.
LECTURE 07: BAYESIAN ESTIMATION
Parametric Methods Berlin Chen, 2005 References:
CSE572: Data Mining by H. Liu
Data Mining Anomaly Detection
Data Mining Anomaly/Outlier Detection
Exploiting the Power of Group Differences to Solve Data Analysis Problems Outlier & Intrusion Detection Guozhu Dong, PhD, Professor CSE
Section 9.2: Sample Proportions
Data Mining Anomaly Detection
Outlines Introduction & Objectives Methodology & Workflow
Presentation transcript:

Data Mining Anomaly/Outlier Detection Lecture Notes for Chapter 10 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

Anomaly/Outlier Detection What are anomalies/outliers? The set of data points that are considerably different than the remainder of the data Variants of Anomaly/Outlier Detection Problems Given a database D, find all the data points x  D with anomaly scores greater than some threshold t Given a database D, find all the data points x  D having the top- n largest anomaly scores f(x) Given a database D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D Applications: Credit card fraud detection, telecommunication fraud detection, network intrusion detection, fault detection

Importance of Anomaly Detection Ozone Depletion History In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations? The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded! Sources: http://exploringdata.cqu.edu.au/ozone.html http://www.epa.gov/ozone/science/hole/size.html

Anomaly Detection Challenges Working assumption: How many outliers are there in the data? Method is unsupervised Validation can be quite challenging (just like for clustering) Finding needle in a haystack Working assumption: There are considerably more “normal” observations than “abnormal” observations (outliers/anomalies) in the data

Anomaly Detection Schemes General Steps Build a profile of the “normal” behavior Profile can be patterns or summary statistics for the overall population Use the “normal” profile to detect anomalies Anomalies are observations whose characteristics differ significantly from the normal profile Types of anomaly detection schemes Graphical Model-based Distance-based Clustering-based

Graphical Approaches Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D) Limitations Time consuming Subjective

Convex Hull Method Extreme points are assumed to be outliers Use convex hull method to detect extreme values http://cgm.cs.mcgill.ca/~godfried/teaching/project s97/belair/alpha.html

Statistical Approaches---Model-based Assume a parametric model describing the distribution of the data (e.g., normal distribution) Apply a statistical test that depends on Data distribution Parameter of distribution (e.g., mean, variance) Number of expected outliers (confidence limit)

Grubbs’ Test Detect outliers in univariate data Assume data comes from normal distribution Detects one outlier at a time, remove the outlier, and repeat H0: There is no outlier in data HA: There is at least one outlier Grubbs’ test statistic: Reject H0 if:

Statistical-based – Likelihood Approach Assume the data set D contains samples from a mixture of two probability distributions: M (majority distribution) A (anomalous distribution) General Approach: Initially, assume all the data points belong to M Let Lt(D) be the log likelihood of D at time t For each point xt that belongs to M, move it to A Let Lt+1 (D) be the new log likelihood. Compute the difference,  = Lt(D) – Lt+1 (D) If  > c (some threshold), then xt is declared as an anomaly and moved permanently from M to A

Limitations of Statistical Approaches Most of the tests are for a single attribute In many cases, data distribution/model may not be known For high dimensional data, it may be difficult to estimate the true distribution

Distance-based Approaches Data is represented as a vector of features Three major approaches Nearest-neighbor based Density based Clustering based

Nearest-Neighbor Based Approach Compute the distance between every pair of data points There are various ways to define outliers: Data points for which there are fewer than p neighboring points within a distance D The top n data points whose distance to the kth nearest neighbor is greatest The top n data points whose average distance to the k nearest neighbors is greatest

Density-based: LOF approach For each point, compute the density of its local neighborhood; e.g. use DBSCAN’s approach Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors Outliers are points with largest LOF value p2  p1 In the NN approach, p2 is not considered as outlier, while LOF approach find both p1 and p2 as outliers Alternative approach: directly use density function; e.g. DENCLUE’s density function

Clustering-Based Idea: Use a clustering algorithm that has some notion of outliers! Problem what parameters should I choose for the algorithm; e.g. DBSCAN? Rule of Thumb: Less than x% of the data should be outliers (with x typically chosen between 0.1 and 10); x might be determined with other methods; e.g. statistical tests.