Nat. Rev. Mater. doi: /natrevmats

Slides:



Advertisements
Similar presentations
Materials for Electrochemical Energy Conversion
Advertisements

0.65 V Identifying Redox Active Molecules to Understand Electrochemistry of Functionalized Silicon Anodes for Lithium-ion Batteries Kate Scholz with Laura.
How Do We Design and Perfect Atom- and Energy-efficient Synthesis of Revolutionary New Forms of Matter with Tailored Properties? Progress on Grand Challenge.
Materials for Electrochemical Energy Conversion
Electrochemical Characterization of Li-ion Batteries for Hybrid Application Ageing Study Abdilbari Shifa Mussa, Rakel Wreland Lindström, Mårten Behm,
Juan Bisquert Nanostructured Energy Devices: Equilibrium Concepts and Kinetics CRC Press Chapter 5 Thermal distribution of electrons, holes and ions in.
Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass, A. Durairajan, Bala S. Haran, R. E. White and B. N. Popov Center for Electrochemical.
Capacity Fade Studies of LiCoO 2 Based Li-ion Cells Cycled at Different Temperatures Bala S. Haran, P.Ramadass, Ralph E. White and Branko N. Popov Center.
6A Luk Pui Lam (7). Lead-acid accumulator Lithium battery charged A secondary cell is any kind of electrolytic cell in which the electrochemical reaction.
Simple Designed Synthesis of Graphene Based Nanocomposites for Energy Related Applications Yuanzhe Piao Graduate school of Convergence Science and Technology,
National Science Foundation Dynamic Phenomena in Complex Oxides for Electrochemical Energy Storage Ying S. Meng, University of California-San Diego, DMR.
CESE November 13, 2009 Jai Prakash Center for Electrochemical Science and Engineering Department of Chemical and Biological Engineering Illinois Institute.
Li-Mn-O Thin Film Cathode prepared at Room Temperature Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Jeong-Kyu Lim a, Hyeon-Young.
National Science Foundation Dynamic Phenomena in Complex Oxides for Electrochemical Energy Storage Ying S. Meng, University of California-San Diego, DMR.
Nanotechnology and the Lithium-ion Battery. Batteries in General –Electrolyte –Electrodes –Anode –Cathode Nanotechnology and the Lithium-ion Battery.
Electrochemistry ZnSO4(aq) CuSO4(aq) Cu Zn Zn
Investigation of electrode materials with 3DOM structures Antony Han Chem 750/7530.
SEC 598 – PV SYSTEMS ENGINEERING Project -1 A Brief Study on Lithium-Ion Battery Technology For Large Scale Residential Systems - GOVINDARAJASEKHAR SINGU.
The low-temperature chemical synthesis of Li 4 Ti 5 O 12 powder for Li-ion battery anodes ChemCYS 2016 – Blankenberge – 17/03/2016 D. De Sloovere, N. Peys,
3D Printed Rechargeable Lithium-ion Batteries and High Performance Anode Materials Wang Ye Research Fellow.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Nat. Rev. Mater. doi: /natrevmats
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Nat. Rev. Endocrinol. doi: /nrendo
Figure 4 Physical unclonable function keys
Nat. Rev. Mater. doi: /natrevmats
Figure 2 Electromechanical properties of OIHPs
Figure 6 Selected examples of TERS applications in material systems
Overview of Lithium-Air (Lithium-Oxygen) Batteries
Nat. Rev. Mater. doi: /natrevmats
Figure 3 Condensation on superhydrophobic surfaces
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Prussian Blue Analogs for Rechargeable Batteries
Parisa Shabani Nezhad, Prof. Junjie Niu*
Volume 2, Issue 2, Pages (February 2017)
Nat. Rev. Mater. doi: /natrevmats
Figure 2 Bad-metal behaviour and electron correlations
Figure 3 Prediction of superconductivity in FeB4
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Figure 5 Photo-driven water oxidation in butylammonium protic ILs
Electrochemical Energy Storage with Mediator-Ion Solid Electrolytes
Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho  Joule 
Figure 7 Corneal tissue engineering
Nat. Rev. Mater. doi: /natrevmats
Nat. Rev. Mater. doi: /natrevmats
Figure 2 Dzyaloshinskii–Moriya interactions
Figure 5 Forms of information for programming self-assembly
Project 2: Hybrid Carbon-Bismuth Nanoparticle Assemblies
Xiaoqiao Zeng, Chun Zhan, Jun Lu, Khalil Amine  Chem 
Figure 7 Prototypes of topological mechanical metamaterials
Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors  Han Hu, Bu Yuan Guan, Xiong Wen (David)
Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho  Joule 
Volume 1, Issue 2, Pages (August 2016)
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Nat. Rev. Mater. doi: /natrevmats
Figure 4 4D printing schemes and time-evolving structure geometries
Nat. Rev. Mater. doi: /natrevmats
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Lithium Sulfur Batteries
In-Situ observation of lithium dendrites in lithium metal anodes
Figure 5 Recent advances in concrete characterization and fabrication
Fig. 5 Electrochemical performance of stretchable aqueous rechargeable lithium-ion battery using a GAP multilayer conductor as a current collector. Electrochemical.
Electrochemical characterization of pV4D4-coated silicon electrodes
Chemo-Mechanical Challenges in Solid-State Batteries
Figure 2 Diffusio-osmotic process for osmotic energy conversion
Volume 2, Issue 2, Pages (February 2017)
Nat. Rev. Mater. doi: /natrevmats
Nat. Rev. Mater. doi: /natrevmats
Fig. 3 Electrochemical performances of symmetric cells using control Li and composite Li electrodes. Electrochemical performances of symmetric cells using.
Presentation transcript:

Nat. Rev. Mater. doi:10.1038/natrevmats.2016.13 Figure 3 Structures and electrochemical voltage profiles of advanced layered cathode materials Part b is adapted with permission from Johnson, C. S., Li, N., Le­fief, C., Vaughey, J. T. & Thackeray, M. M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x) LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095–6106 (2008), American Chemical Society; and is adapted from Lee, K.‑S., Myung, S.‑T., Amine, K., Yashiro, H. & Sun, Y.‑K. Structural and electrochemical properties of layered Li[Ni1−2xCoxMnx]O2 (x = 0.1– 0.3) positive electrode materials for Li‑ion batteries. J. Electrochem. Soc. 154, A971–A977 (2007), reproduced by permission of the Electrochemical Society. Part d is adapted from Nayak, P. K., Grinblat, J., Levi, M., Mark­ovsky, B. & Aurbach, D. Structural and electrochemical evidence of layered to spinel phase transformation of Li and Mn rich layered cathode materials of the formulae xLi[Li1/3Mn2/3]O2·(1−x) LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon cycling. J. Electrochem. Soc. 161, A1534–A1547 (2014), reproduced by permission of the Electrochemical Society. Choi, J. W. & Aurbach, D. (2016) Promise and reality of post-lithium-ion batteries with high energy densities Nat. Rev. Mater. doi:10.1038/natrevmats.2016.13