Coupled transcription-splicing regulation of mutually exclusive splicing events at the 5′ exons of protein 4.1R gene by Shu-Ching Huang, Aeri Cho, Stephanie.

Slides:



Advertisements
Similar presentations
Up-Regulation of Activating Transcription Factor-5 Suppresses SAP Expression to Activate T Cells in Hemophagocytic Syndrome Associated with Epstein-Barr.
Advertisements

by Hanna S. Radomska, Anne B
Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin Agene by Md S. Jamaluddin, Irene Chen, Fan Yang, Xiaohua Jiang, Michael.
by Elena A. Federzoni, Peter J. M. Valk, Bruce E
by Madhu Gupta, Paul T. Mungai, and Eugene Goldwasser
by Toshibumi Shimokawa, and Chisei Ra
The Role of Transcription Factor PU
Crucial Roles of MZF1 and Sp1 in the Transcriptional Regulation of the Peptidylarginine Deiminase Type I Gene (PADI1) in Human Keratinocytes  Sijun Dong,
by Sang-Hyun Song, AeRi Kim, Tobias Ragoczy, M. A
by Hong Hao, Huiling Qi, and Manohar Ratnam
FOG-1 represses GATA-1-dependent FcϵRI β-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice by Keiko Maeda, Chiharu.
MafB negatively regulates RANKL-mediated osteoclast differentiation
Volume 55, Issue 1, Pages (July 2014)
Volume 28, Issue 4, Pages (November 2007)
A Slow RNA Polymerase II Affects Alternative Splicing In Vivo
by Sanjai Sharma, and Alan Lichtenstein
by Wu-Guo Deng, Ying Zhu, and Kenneth K. Wu
Volume 129, Issue 5, Pages (November 2005)
The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation  Rixun Fang, Nilda A. Santiago, Lynne C. Olds,
Nicolas Charlet-B, Gopal Singh, Thomas A. Cooper  Molecular Cell 
Tom Misteli, David L Spector  Molecular Cell 
by Guang Yang, Shu-Ching Huang, Jane Y. Wu, and Edward J. Benz
Involvement of SR Proteins in mRNA Surveillance
by Shrikanth P. Hegde, JingFeng Zhao, Richard A. Ashmun, and Linda H
Marco Baralle, Tibor Pastor, Erica Bussani, Franco Pagani 
LPS induces CD40 gene expression through the activation of NF-κB and STAT-1α in macrophages and microglia by Hongwei Qin, Cynthia A. Wilson, Sun Jung Lee,
RNAi-Mediated PTB Depletion Leads to Enhanced Exon Definition
IFN-γ Upregulates Expression of the Mouse Complement C1rA Gene in Keratinocytes via IFN-Regulatory Factor-1  Sung June Byun, Ik-Soo Jeon, Hyangkyu Lee,
The interferon regulatory factor ICSBP/IRF-8 in combination with PU
Volume 16, Issue 6, Pages (December 2004)
M. Ushita, T. Saito, T. Ikeda, F. Yano, A. Higashikawa, N. Ogata, U
Sp1 Is Required for Glucose-Induced Transcriptional Regulation of Mouse Vesicular Glutamate Transporter 2 Gene  Tao Li, Liqun Bai, Jing Li, Suzu Igarashi,
Rose-Anne Romano, Barbara Birkaya, Satrajit Sinha 
I-Cheng Ho, Martin R Hodge, John W Rooney, Laurie H Glimcher  Cell 
Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination  Konstantina Skourti-Stathaki, Nicholas J.
Exon Circularization Requires Canonical Splice Signals
Volume 25, Issue 9, Pages (September 2017)
Peroxisome Proliferator-Activated Receptor-α Is a Functional Target of p63 in Adult Human Keratinocytes  Silvia Pozzi, Michael Boergesen, Satrajit Sinha,
Regulation of CSF1 Promoter by the SWI/SNF-like BAF Complex
SUMO Promotes HDAC-Mediated Transcriptional Repression
Volume 18, Issue 2, Pages (April 2005)
Coactivating Factors p300 and CBP Are Transcriptionally Crossregulated by Egr1 in Prostate Cells, Leading to Divergent Responses  Jianxiu Yu, Ian de Belle,
Volume 5, Issue 6, Pages (December 2013)
Transcriptional Termination Enhances Protein Expression in Human Cells
Volume 38, Issue 3, Pages (May 2010)
Yingqun Huang, Joan A. Steitz  Molecular Cell 
Volume 13, Issue 3, Pages (March 2006)
Spatial and Temporal Recruitment of Androgen Receptor and Its Coactivators Involves Chromosomal Looping and Polymerase Tracking  Qianben Wang, Jason S.
Codependent Activators Direct Myoblast-Specific MyoD Transcription
Volume 127, Issue 4, Pages (October 2004)
Exon Identity Established through Differential Antagonism between Exonic Splicing Silencer-Bound hnRNP A1 and Enhancer-Bound SR Proteins  Jun Zhu, Akila.
Dan Yu, Rongdiao Liu, Geng Yang, Qiang Zhou  Cell Reports 
Tom Misteli, David L Spector  Molecular Cell 
Sang-Hyun Song, Chunhui Hou, Ann Dean  Molecular Cell 
Defining the Regulatory Elements in the Proximal Promoter of ΔNp63 in Keratinocytes: Potential Roles for Sp1/Sp3, NF-Y, and p63  Rose-Anne Romano, Barbara.
Volume 29, Issue 1, Pages (January 2008)
Formation of the Androgen Receptor Transcription Complex
Volume 72, Issue 2, Pages (July 2007)
Transcriptional Regulation by p53 through Intrinsic DNA/Chromatin Binding and Site- Directed Cofactor Recruitment  Joaquin M Espinosa, Beverly M Emerson 
Volume 14, Issue 4, Pages (May 2004)
PU.1 Expression Delineates Heterogeneity in Primary Th2 Cells
Volume 55, Issue 1, Pages (July 2014)
Volume 2, Issue 3, Pages (September 2012)
Volume 2, Issue 4, Pages (October 2012)
Volume 16, Issue 5, Pages (December 2004)
A Splicing-Independent Function of SF2/ASF in MicroRNA Processing
Volume 20, Issue 6, Pages (December 2005)
MTB1 to MTB3 Are Direct Transcriptional Targets of MYC2.
A Slow RNA Polymerase II Affects Alternative Splicing In Vivo
Chih-Yung S. Lee, Tzu-Lan Yeh, Bridget T. Hughes, Peter J. Espenshade 
Presentation transcript:

Coupled transcription-splicing regulation of mutually exclusive splicing events at the 5′ exons of protein 4.1R gene by Shu-Ching Huang, Aeri Cho, Stephanie Norton, Eva S. Liu, Jennie Park, Anyu Zhou, Indira D. Munagala, Alexander C. Ou, Guang Yang, Amittha Wickrema, Tang K. Tang, and Edward J. Benz Blood Volume 114(19):4233-4242 November 5, 2009 ©2009 by American Society of Hematology

Analyses of first exon expression. Analyses of first exon expression. (A) Schematic representation of the splicing patterns from exon 1 to its downstream 3′ ss. p3′ss indicates proximal 3′ss; d3′ss, distal 3′ss. AUG-1 located within exon 2′. (B) First exon expression in human and mouse cell lines and tissues. A common anti-sense primer annealing to exon 2 and variable forward primers specific to each of the first exons were used for PCR on cDNA synthesized by use of a downstream exon 2 primer. The top panels are PCR; the bottom panels are Southern hybridization with exon 2′ as a probe (Ex2′). (C) First exon expression during cultured CD34+ erythroid differentiation by use of the same RT-PCR strategies. The top panels are PCR products; the bottom panels are Southern-blot hybridizations that use exon 2′ as a probe (Ex2′). (D) Real-time PCR analysis of ratios of 1A:1C expression during CD34+ differentiation. 0, 4, 8, 10, and 14 indicate days of differentiation. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology

Cotranscriptional pre-mRNA splicing events detected by ChIP and ChRIP assays. Cotranscriptional pre-mRNA splicing events detected by ChIP and ChRIP assays. (A) Schematic diagram of ChIP (adapted with permission from Listerman et al36); antibodies against splicing factors (SF) pull down chromatin regions attached to splicing factors through the nascent RNA and pol II (pol). CBC indicates cap-binding complex. (B) 4.1R DNA sequences detected in ChIP assays by the use of anti-SF2/ASF Ab. (Top panel) the 4.1R gene sequences amplified by indicated primer sets comprises the regions spanning intron upstream of exon 2′ and exon 2 (In/Ex2), exon 2′ and exon 2 (Ex2′/Ex2), and within exon 2 (Ex2/Ex2). DNA regions upstream of 1A promoter were amplified with primer sets up1/up2 and up3/up4. (Bottom panel) PCR. (C) Schematic diagram of ChRIP (adapted with permission from Listerman et al36); antibodies against AcH4 pull down the nascent RNA attached to the active chromatin through pol II. (D) Analyses of 4.1R pre-mRNA transcripts detected in anti-AcH4 (active chromatin) or anti-H3K4me1 (silenced chromatin) antibody precipitates. (Top panel) the region of primer annealing for RT-PCR is region. (Middle panel) 4.1R pre-mRNA spanning the region between the intron upstream of exon 2′ and exon 2 detected in input lysate, anti-AcH4, or IgG precipitates in the presence or absence of RT reaction. (Bottom panel) 4.1R pre-mRNA spanning the same region detected in input lysate, anti-H3K4me1, or IgG precipitates in the presence or absence of RT reaction. (E) 4.1R mRNA detected in anti-AcH4 or anti-H3K4me1 precipitates. (Top panel) the primer at exon 17 was used for RT and amplified by primer sets located at exons 13 and 17. (Middle panel) amplified products with or without exon 16 detected in anti-AcH4 precipitates in the presence or absence of RT reaction. Input lysate and IgG precipitates served as controls. (Bottom panel) amplified products with or without exon 16 detected in anti-H3K4me1 precipitates in the presence or absence of RT reaction. Input lysate and IgG precipitates served as controls. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology

Expression of exon 2′/2 under the control of CMV or its native promoter. Expression of exon 2′/2 under the control of CMV or its native promoter. (A) Minigene constructs under the control of a CMV promoter, containing exon 1 and its respective 200, 300, and 400 bp of downstream intronic sequences joined with exon 2′/2 and an equal length of its upstream intronic sequences. (B) Exon 2′ splicing patterns in minigene-transiently transfected or nontransfected MELC. Splicing products were analyzed for exon 2′ inclusion by RT-PCR by the use of a vector-specific primer for minigene or exon 2-specific primer for endogenous 4.1R. (Top panels) RT-PCR products. (Bottom panels) Southern blot with exon 2′ probe (Ex2′). Endo indicates MELC endogenous exon 2′/2 splicing pattern. (C) Exon 2′ splicing patterns in MELC transfected with minigene constructs under the control of their native promoters. RNAs were analyzed from either transiently (T) or stably (S) transfected MELCs. MELCs stably transfected with the respective minigenes under the control of CMV promoters (pCMV) or endogenous (endo) RNAs served as controls. (Top panels) RT-PCR products. (Middle panel) Southern blot with exon 2′ probe (Ex2′). (Bottom panels) Southern blot with exon 2 probe (Ex2). For each construct, 4 transfections were performed per experiment. Each experiment was repeated at least 3 times. Standard deviations are omitted in results that consistently have 0% or 100% of the same product in all 4 reproducible experiments. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology

Inhibition of transcription elongation did not alter 1A or 1B exon 2′/2 splicing patterns. Inhibition of transcription elongation did not alter 1A or 1B exon 2′/2 splicing patterns. (A) Analyses of exon 2′/2 expression in MELCs in the presence of 0, 50, 100, and 150 μmol/L of DRB. Cells were treated with DRB for 24 hours and RNAs analyzed for exon 2′ expression by the use of a common anti-sense primer located in exon 2 and sense primer located either at exon 1A or 1B. Ex2′ indicates Southern blot using exon 2′ as a probe; Ex2, Southern blot using exon 2 as a probe. (B) Analyses of exon 2′/2 expression in native promoter-driven 1A and 1B minigene stably transfected MELCs in the presence of 0, 50, 100, and 150 μmol/L of DRB. RNA collected from cells treated with DRB for 24 hours were analyzed for exon 2′ expression. Ex2′ indicates Southern blot using exon 2′ as a probe; Ex2, Southern blot using exon 2 as a probe. For each construct, 4 stable lines were performed per experiment. Each experiment was repeated at least 3 times. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology

SF2/ASF UV cross-linked to the sequences at the junction of exon 2′/2. SF2/ASF UV cross-linked to the sequences at the junction of exon 2′/2. (A) UV cross-linking templates consisting of the wild-type (WT) or mutated (Mu1, Mu2) junction of exon 2′/2 and its flanking sequences. (B) Purified SF2/ASF used in the cross-linking experiments. (C) WT or mutant transcripts cross-linked to HeLa nuclear extract or SF2/ASF. 32P-labeled transcripts were subjected to UV cross-linking by the use of indicated nuclear extracts or purified SF2/ASF in the presence of tRNA as a nonspecific competitor. NE indicates nuclear extracts. (D) For competition assay, 25-fold molar excess of unlabeled WT or Mu1 and Mu2 transcripts was added in binding reactions. − indicates that the probe was incubated in the absence of competitors. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology

Depletion of SF2/ASF affects 3′ splice-site usages from exon 1B but not 1A. Depletion of SF2/ASF affects 3′ splice-site usages from exon 1B but not 1A. (A) Schematic of SF2/ASF structural organization and the regions targeted by SF2-shRNAs (sh84, sh584, and sh726). RRM indicates RNA recognition motif. RS, arginine/serine-rich domain. (B) The reduction of endogenous SF2/ASF expression by SF2-shRNAs and the effects on 3′ ss usage. (Top panel) RT-PCR analyses of exon 1A and 1B splicing patterns from RNA isolated from either control nonsilencing shRNA (Non) or SF2-shRNA–treated 1A or 1B minigene expressing MELC. (Middle panels) Southern blot hybridization with exon 2′ (Ex2′) or exon 2 (Ex2) probes. For each shRNA, 4 transductions were performed per experiment. Each experiment was repeated at least 3 times. Mean values ± SD of 3 independent experiments are shown. Standard deviations are omitted in results that consistently have 0% of exon 2′-inclusion product in all 3 reproducible experiments. (Bottom panel) equal amounts of cell lysates from control nonsilencing shRNA (Non)- and SF2-shRNA–treated cells were Western blotted for the presence of SF2/ASF. Expression, SF2/ASF expression levels in shRNA-treated cells relative to nonsilenced cells. β-actin served as loading control. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology

Recruitment model for cotranscriptional splicing of exon 2′/2. Recruitment model for cotranscriptional splicing of exon 2′/2. In this model, promoters 1A and 1B have differential abilities to bind SF2/ASF to the CTD of pol II. (A) In the 1A promoter, SF2/ASF is not recruited to the CTD; transcription of pre-mRNA exposes the distal 3′ss and allows for joining of exon 1A to produce a mature mRNA lacking exon 2′. (B) In the 1B promoter, SF2/ASF is recruited to the CTD of pol ll. The bound SF2/ASF blocks the distal 3′ss, favoring use of the proximal 3′ss, and results in the inclusion of exon 2′. Shu-Ching Huang et al. Blood 2009;114:4233-4242 ©2009 by American Society of Hematology