A personal overview of particle physics activities at PSI

Slides:



Advertisements
Similar presentations
LBL Comet-Mu2E Workshop January 24, 2009 Mu-e Conversion Backgrounds and Sensitivities– from proposal to measurement Doug Bryman "Wishing does not make.
Advertisements

Progress on the final TWIST measurement of James Bueno, University of British Columbia and TRIUMF on behalf of the Triumf Weak Interaction Symmetry Test.
LFV and LUV at CLEO Lepton-Flavor Violation: –Probe non-SM physics and/or SM extensions –Here, report on Upsilon(1S)   Complements other studies MEG.
WG4:  physics B. Lee Roberts, on behalf of the Intense Muon Physics Working Group - p. 1/48 WG4 Summary and Future Plans The muon trio and more B. Lee.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
A. Baldini PSI 18 July 2007 MEG Overview Cobra (W. Ootani) LXe calorimeter (S. Mihara) Calibrations (G. Signorelli) Drift Chambers (J. Egger) Timing counter.
Ivan Logashenko for Mu2e Collaboration
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
1 Muon Physics Project X Workshop Fermilab 17 November 2007.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
19 April 2006Fabrizio Cei1 The Liquid Xenon Calorimeter of the MEG Experiment Fabrizio Cei INFN and Universita’ di Pisa Incontri di Fisica delle Alte Energie.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
 N-eN Rare Process M. Aoki, Osaka University MuSAC-2009, Tokai, 2010/3/10-11.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
Ю.Г. Куденко 1 Редкие распады каонов Дубна, 12 мая 2004 Вторые Марковские чтения Дубна-Москва, мая 2004 г. Институт ядерных исследований РАН CKM.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
May William Molzon, UC Irvine Muon Physics at Fermilab 1 Muon Physics at Fermilab Will the physics be important in a global context when the experiment.
RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei On behalf of the COHERENT collaboration Alexander.
Yasuhiro Okada (KEK) February 4, 2005 at KEK
First results from the MEG/RE12 experiment at PSI A.M. Baldini 29 sep 2009 Hep-ex: v1 18 Aug 2009.
Μ→e search using pulsed muon beam μ -  e - νν nuclear muon capture Muon Decay In Orbit  π - +(A,Z)→(A,Z-1)*, (A,Z-1)* →γ+(A,Z-1), γ→e + e - Prompt.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
Douglas Bryman University of British Columbia Seeking New Physics with Rare Decays Early Adventures at TRIUMF and Future Prospects JMP Retirement Symposium.
COMET and DeeMe. Mu-e conversion search at J-PARC COMET Target sensitivity 10 C.L. using aluminum target – SINDRUM II 7x – MEG 2.4x
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Physics with the COMET Staging Plan Satoshi MIHARA IPNS, KEK.
Muon Anomalous Magnetic Moment --a harbinger of new physics Chang Liu Physics 564.
Particle Physics Experiments at PSI Stefan Ritt Paul Scherrer Institute, Switzerland.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Muon Rare Decay at PRISM Masaharu Aoki Osaka University KEKNP01 December 10-12, 2001, KEK.
g beam test of the Liquid Xe calorimeter for the MEG experiment
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
MEG Experiment Data Analysis: a status report
The MEG Experiment at PSI: a sensitive search for m eg decay
Status of MEG-I physics analysis
The η Rare Decays in Hall D
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Search for lepton flavor violation: Latest results from the MEG experiment Gordon Lim.
Electric Dipole Moments: Searches at Storage Rings
The Electromagnetic calorimeter of the MEG Experiment
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
The COMET Experiment Ajit Kurup, Imperial College London, on behalf of the COMET Collaboration. ABSTRACT The COherent Muon to Electron Transition (COMET)
New experiment to search for mge g at PSI status and prospects
Marco Incagli - INFN Pisa SPSC meeting - Villars - 27 sep 2004
Precision Muon Experiments
Prospects for CLFV experiments
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Neutron Detection with MoNA LISA
Electric Dipole Moments: Searches at Storage Rings
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Upgrade of LXe gamma-ray detector in MEG experiment
CMS Physics Analysis in China
-LFV and related topics
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
(particle) physics with a new high intensity low energy muon source
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
COherent Muon to Electron Transition (COMET)
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

A personal overview of particle physics activities at PSI A. M. Baldini INFN Pisa

Currently 2 mA (1. 2 MW) will be increased to 3 (1 Currently 2 mA (1.2 MW) will be increased to 3 (1.8 MW) in the near future

Two graphite targets M (mm), E(cm) from which several secondary beams are extracted Named as p or m – E or M - # e.g.: pE3 Roughly 107 m/s 70% of the beam is sent to SINQ, a neutron spallation source for materials studies, solid state physics...

e.g.Mass limits for Higgs Search PSI has a tradition on precision measurements. Muon lifetime: MuLan and Fast In V-A theory muon lifetime factorizes into a weak contribution plus radiative corrections. e.g.Mass limits for Higgs Search The Fermi constant is an input to all precision electroweak studies: Dr contains all relevant loop corrections: GF current precision constitutes a limit to these fits

MuLan at pE3 Surface muons (28.8 MeV/c) coming from p decay at rest on the surface of the E target Scintillator tiles + PMTs arranged symmetrically to reduce unwanted muon polarization effects Beam structure created artificially 20 muons of the DC beam are used every 10 muon lifetimes 1012 events collection: final 1 ppm measurement : improvement of one order of magnitude wrt previous measurements Recent (2007) result: 11 ppm measurent (almost a factor 2 improvement): paper submitted to PRL

Dtm < 1ppm in future? FAST Use of a pion beam (pM1): 170 MeV/c @ 1 MHz Array of plastic scintillating fibers read by multi-anode PMTs No polarization problems In principle should reach a 1 ppm GF measurement but it is having several problems with electronics Dtm < 1ppm in future? Radiative corrections would support another order of magnitude on tm (beyond 1 ppm) but that would go way beyond the precision of the other electroweak parameters

Another tradition: LFV searches by using muons: m+  e+ g search Lab. Year Upper limit Experiment or Auth. PSI 1977 < 1.0  10-9 A. Van der Schaaf et al. TRIUMF < 3.6  10-9 P. Depommier et al. LANL 1979 < 1.7  10-10 W.W. Kinnison et al. 1986 < 4.9  10-11 Crystal Box 1999 < 1.2  10-11 MEGA ~2010 ~ 10-13 MEG Two orders of magnitude improvement several SUSY GUT and SUSY see-saw models predict BRs at the reach of MEG

SUSY SU(5) predictions BR (meg)  10-14  10-13 SUGRA indications LFV induced by slepton mixing MEG goal Experimental limit (MEGA) SUSY SU(5) predictions BR (meg)  10-14  10-13 SUSY SO(10) predictions BRSO(10)  100 BRSU(5) R. Barbieri et al., Phys. Lett. B338(1994) 212 R. Barbieri et al., Nucl. Phys. B445(1995) 215 combined LEP results favour tanb>10

Connection with n-oscillations Additional contribution to slepton mixing from V21 (the matrix element responsible for solar neutrino deficit) J. Hisano, N. Nomura, Phys. Rev. D59 (1999) Our goal Experimental limit tan(b)=30 tan(b)=1 After SNO After Kamland in the Standard Model !!

background signal   e g accidental   e n n   e g n n ee  g g Signal and background background signal   e g accidental   e n n   e g n n ee  g g eZ  eZ g physical   e g n n e+ + g e+ + g n e+ + n qeg = 180° Ee = Eg = 52.8 MeV Te = Tg g

The sensitivity is limited by the accidental background The n. of acc. backg events (nacc.b.) depends quadratically on the muon rate and on how well we measure the experimental quantities: e-g relative timing and angle, positron and photon energy Effective BRback (nback/Rm T) Integral on the detector resolutions of the Michel and radiative decay spectra

Required Performances BR (meg)  10-13 reachable BRacc.b.  2 10-14 and BRphys.b.  0.1 BRacc.b. with the following resolutions FWHM Exp./Lab Year DEe/Ee (%) DEg /Eg Dteg (ns) Dqeg (mrad) Stop rate (s-1) Duty cyc.(%) BR (90% CL) SIN 1977 8.7 9.3 1.4 - 5 x 105 100 3.6 x 10-9 TRIUMF 10 6.7 2 x 105 1 x 10-9 LANL 1979 8.8 8 1.9 37 2.4 x 105 6.4 1.7 x 10-10 Crystal Box 1986 1.3 87 4 x 105 (6..9) 4.9 x 10-11 MEGA 1999 1.2 4.5 1.6 17 2.5 x 108 (6..7) 1.2 x 10-11 MEG 2009 0.8 4 0.15 19 2.5 x 107 1 x 10-13 Need of a DC muon beam

Detector outline Experimental method Stopped beam of 3 107  /sec in a 150 mm target Solenoid spectrometer & drift chambers for e+ momentum Scintillation counters for e+ timing Liquid Xenon calorimeter for  detection (scintillation) fast: 4 / 22 / 45 ns high LY: ~ 0.8 * NaI short X0: 2.77 cm

Particles intensity as a function of the selected momentum The PSI pE5 DC beam Primary proton beam E target Particles intensity as a function of the selected momentum m+ 28.8 MeV/c muons from decay of  stop at rest: fully polarized 108 m/s could be stopped in the target but only 3x107 will be used because of accidental background

A new kind of calorimeter: experimentally measured resolutions  - p  0 n e 0    4.8 % FWHM FWHM(T)  150 ps x= 2 - 4 mm

m radiative decay Laser LED g e m n n p0 gg alpha Nickel g Generator Lower beam intensity < 107 Is necessary to reduce pile-ups Better st, makes it possible to take data with higher beam intensity A few days ~ 1 week to get enough statistics e m n n (rough) relative timing calib. < 2~3 nsec Laser PMT Gain Higher V with light att. Can be repeated frequently p0 gg p- + p  p0 + n p0  gg (55MeV, 83MeV) p- + p  g + n (129MeV) 10 days to scan all volume precisely (faster scan possible with less points) LH2 target alpha Xenon Calibration PMT QE & Att. L Cold GXe LXe e+ g e- Nickel g Generator Proton Acc Li(p,)Be LiF target at COBRA center 17.6MeV g ~daily calib. Can be used also for initial setup 9 MeV Nickel γ-line on off 3 cm 20 cm quelle K Bi NaI Tl Illuminate Xe from the back Source (Cf) transferred by comp air  on/off F Li(p, 1) at 14.6 MeV Polyethylene Li(p, 0) at 17.6 MeV 0.25 cm Nickel plate

MEG time scale Detectors commissioning going on: soon start of data taking Goal: hope to get a significant result before entering the LHC era Measurements and detector simulation make us confident that we can reach the SES of 4 x 10-14 to meg (BR 10-13) and possibly below… Revised document now LoI Proposal Planning R & D Assembly Data Taking 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

The future of LFV searches with muons Accidental background: meg sensitivity not much below the MEG one. Maybe 10-14÷15 possible me conversion in nuclei does not have this problem: single e+ sign. Best present sensitivity achieved by SINDRUM II at PSI: <7 10-13 @ 90% C.L.: W. Bertl et al., EPJ C47(2006) 37  Decay In Orbit

Beam related background Moderator: range  about ½ range  SINDRUM At higher muon rates ( 1011 /s) a good strategy (ex MECO) would be to use a pulsed proton beam and make measurements in a time window distant from the beam pulse This will not be possible at PSI

An important project for PSI: the spallation Ultra Cold Neutron source

n EDM: P and T violating 1. At the UCN facility at the ILL (Grenoble) reactor 2. Move the spectrometer to PSI 2. Project, build and operate a new spectrometer (n2EDM) ay PSI later on

m edm: a possibility for the future at PSI Theoretically related to m e g Disentangle the EDM effect from the g-2 precession by means of a radial electric field: JPARC LOI (Jan 2003) for a dedicated experiment->10-24 e.cm level M. Aoki et al. + F.J.M. Farley et al., PRL 93 0521001(2004) g-2 precession cancelled. Only the one related to the electric dipole moment, out of the storage ring plane, left: up-down detectors measure the asymmetry build up with time High intensity beam of 0.5 GeV/c polarized muons (JPARC LOI)

PSI m edm (A. Adelmann and K. Kirch, hep-ex/0606034) pm = 125 MeV/c , P ≈ 0.9 at mE1 beam line = 1.57 B = 1 T E = 0.64 MV/m R = 0.36 m A table-top experiment in one year of running 4 orders of magnitude improvement

Muon EDM Limits S. Eidelman et al., PLB 592(2004)1 Proof of the measurement principle to judge about the realization of much larger experiment SM : < 10-36

Thank you and many apologies for not having been able to come to Fermilab