Volume 17, Issue 5, Pages (November 2015)

Slides:



Advertisements
Similar presentations
Volume 8, Issue 2, Pages (February 2017)
Advertisements

Volume 5, Issue 5, Pages (November 2015)
Electrical Guidance of Human Stem Cells in the Rat Brain
Volume 2, Issue 5, Pages (May 2014)
Reduced scar formation in the injured GM of CCR2−/− mice
Volume 11, Issue 2, Pages (August 2012)
Volume 9, Issue 5, Pages (November 2011)
Volume 10, Issue 4, Pages (April 2012)
Volume 11, Issue 1, Pages (July 2012)
Volume 30, Issue 6, Pages (September 2014)
Origin and function of olfactory bulb interneuron diversity
Electrical Guidance of Human Stem Cells in the Rat Brain
High Levels of Id1 Expression Define B1 Type Adult Neural Stem Cells
Volume 12, Issue 2, Pages (February 2013)
Volume 10, Issue 1, Pages (January 2012)
Volume 5, Issue 6, Pages (December 2015)
Volume 8, Issue 2, Pages (February 2017)
Origin of New Glial Cells in Intact and Injured Adult Spinal Cord
Volume 8, Issue 4, Pages (April 2017)
Imported Stem Cells Strike against Stroke
Volume 2, Issue 5, Pages (May 2014)
Da Yong Lee, Scott M. Gianino, David H. Gutmann  Cancer Cell 
Volume 20, Issue 3, Pages e4 (March 2017)
Volume 59, Issue 4, Pages (August 2008)
Volume 19, Issue 5, Pages (November 2016)
Erika Pastrana, Violeta Silva-Vargas, Fiona Doetsch  Cell Stem Cell 
Volume 12, Issue 4, Pages (April 2013)
Promoting Myelin Repair through In Vivo Neuroblast Reprogramming
Volume 7, Issue 4, Pages (October 2016)
Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment- Dependent Neurogenesis  Ionut Dumitru, Angela Neitz, Julieta Alfonso,
Tracing Stem Cell Division in Adult Neurogenesis
Volume 22, Issue 1, Pages e9 (January 2018)
In Vivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons after Brain Injury and in an Alzheimer’s Disease Model  Ziyuan Guo, Lei Zhang,
Volume 4, Issue 5, Pages (May 2015)
Volume 26, Issue 1, Pages (January 2018)
Volume 19, Issue 11, Pages (June 2009)
Volume 9, Issue 6, Pages (December 2017)
Volume 86, Issue 4, Pages (May 2015)
Volume 86, Issue 6, Pages (June 2015)
Volume 16, Issue 4, Pages (April 2015)
Volume 7, Issue 6, Pages (December 2010)
Volume 9, Issue 4, Pages (October 2011)
Volume 16, Issue 6, Pages (June 2015)
Volume 2, Issue 2, Pages (February 2014)
Volume 70, Issue 5, Pages (June 2011)
Volume 1, Issue 1, Pages (June 2013)
Volume 15, Issue 4, Pages (April 2016)
Volume 13, Issue 5, Pages (November 2013)
A Specialized Vascular Niche for Adult Neural Stem Cells
Volume 10, Issue 7, Pages (February 2015)
Volume 51, Issue 2, Pages (July 2006)
Volume 5, Issue 5, Pages (November 2015)
Volume 9, Issue 5, Pages (November 2017)
Volume 11, Issue 4, Pages (October 2012)
Volume 26, Issue 19, Pages (October 2016)
Volume 19, Issue 5, Pages (November 2016)
Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System  Cédric G. Geoffroy, Brett J. Hilton, Wolfram.
Volume 6, Issue 5, Pages (May 2010)
Volume 80, Issue 5, Pages (December 2013)
Volume 26, Issue 1, Pages (January 2018)
Volume 22, Issue 4, Pages (January 2018)
Volume 6, Issue 2, Pages (February 2010)
Volume 5, Issue 2, Pages (August 2015)
Guo-li Ming, Hongjun Song  Neuron  Volume 70, Issue 4, Pages (May 2011)
Activation of Intrinsic Growth State Enhances Host Axonal Regeneration into Neural Progenitor Cell Grafts  Hiromi Kumamaru, Paul Lu, Ephron S. Rosenzweig,
Volume 11, Issue 6, Pages (December 2018)
Zhengang Yang, Guo-li Ming, Hongjun Song  Cell Stem Cell 
Volume 17, Issue 3, Pages (October 2016)
Taking Neural Crest Stem Cells to New Heights
Volume 2, Issue 6, Pages (June 2014)
Presentation transcript:

Volume 17, Issue 5, Pages 624-634 (November 2015) Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke  Maryam Faiz, Nadia Sachewsky, Sergio Gascón, K.W. Annie Bang, Cindi M. Morshead, Andras Nagy  Cell Stem Cell  Volume 17, Issue 5, Pages 624-634 (November 2015) DOI: 10.1016/j.stem.2015.08.002 Copyright © 2015 Elsevier Inc. Terms and Conditions

Cell Stem Cell 2015 17, 624-634DOI: (10.1016/j.stem.2015.08.002) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Migratory SVZ Cells Give Rise to Neurospheres in the Stroke-Injured Cortex (A) Experimental design for cortical NS culture. (B) SVZ derived and cortical derived NSs (svz and ctx). (C) Number of NSs formed from the uninjured and stroke-injured cortex and SVZ (∗∗ = p = 0.001, unpaired t test with Welch’s correction, t(8) = 5.006, data represent ±SEM, nctx = 11 mice, and nsvz = 9 mice). (D) Diagram of injection sites lateral and caudal to the original sensory-motor cortex lesion site. (E) Number of NSs formed from the cortex and SVZ in lesions lateral and caudal to the original sensory-motor cortex lesion (smctx) and after PVD (∗∗∗ = p < 0.001, unpaired t test, t(12) = 9.785, data represent ±SEM, nsmctx_ctx = 9 mice, nsmctx_SVZ = 5 mice; ∗∗∗ = p < 0.001, unpaired t test, t(6) = 8.454, data represent ±SEM, nlat_ctx = 4 mice, nlat_SVZ = 4 mice; ∗ = p < 0.05, unpaired t test, t(4) = 3.908, data represent ±SEM, ncaud_ctx = 3 mice, ncaud_SVZ = 3 mice; and ∗ = p < 0.05, unpaired t test, t(12) = 2.978, data represent ±SEM, nPVD_ctx = 7 mice, nPVD_SVZ = 7 mice). (F) Number of NSs at passage 4 and passage 10 from the original sensory-motor cortex lesion, lateral, and caudal to that site and after PVD (n.s., unpaired t test, t(5)passage4_et-1 = 0.1879, t(11)passage10_et-1 = 1.1016, t(12)passage4_PVD = 0.3755, t(10) passage10_PVD = 1.910, t(3) passage4_lat = 0.07205, t(2) passage10_late = 0.112, t(4) passage4_caud = 1.349, t(4) passage10_caud = 0.9843, data represent ±SEM, nP4_et1_ctx = 3, nP10_et1_ctx = 6, nP4_PVD_ctx = 7, nP10_PVD_ctx = 7, nP4_lat_ctx = 2, nP10_lat_ctx = 2, nP4_caud_ctx = 2, nP10_caud_ctx = 2, nP4_et1_SVZ = 4, nP10_et1_SVZ = 7, nP4_PVD_SVZ = 6, nP10_PVD_SVZ = 6, nP4_lat_SVZ = 3, nP10_lat_SVZ = 2, nP4_caud_SVZ = 4, and nP10_caud_SVZ = 4, 3 independent trials). (G) Lineage tracing of SVZ cells using Nestin-CreERT2;tdTomatofl;hGFAP-GFP mice. The picture shows tdTOMATO expression in ctxNSs. (H) Lineage tracing of SVZ cells using Nestin-CreERT2;YFPfl mice. The pictures show YFP expression in ctxNSs and SVZNSs. (I) YFP expression in ctxNSs from stroke sites lateral and caudal to the original sensory-motor cortex lesion site and PVD. (J) AraC ablation paradigms. (K) Number of ctxNSs and svzNSs after AraC ablation (∗∗ = p < 0.01, ∗∗∗ = p < 0.001, one-way ANOVA with Tukey’s post hoc, F (2,11) = 16.91, data represent ±SEM from (days, d) nsaline = 8, n14dAraC = 4, and n10dAraC = 2. (L) KI-67 positive cells in the cortex (uninjured = uninj, injured = inj, subventricular zone = SVZ, lateral ventricle = lv, cortex = ctx, corpus callosum = cc, sensory-motor cortex = smctx, PVD, lateral = lat, caudal = caud, tdTOMATO = TOM, and tamoxifen = TAM). See also Figure S1 and Table S1. Cell Stem Cell 2015 17, 624-634DOI: (10.1016/j.stem.2015.08.002) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Characterization of Migratory SVZ Cells (A) Number of ctxNSs (∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.001, one-way ANOVA with Tukey’s post hoc, F(9,70)ctx = 7.669, F(9,61)svz = 1.032, data represent ±SEM (days, d), n0dcx = 3, n4h_cx = 4, n1d_cx = 7, n2d_cx = 6, n3dcx = 7, n4d_cx = 21, n7d_cx = 7, n10d_cx = 8, and n2mo_cx = 8). (B) SVZ derived cells migrating to the stroke-injured cortex in Nestin-CreERT2;YFPfl and Nestin-CreERT2;tdTomatofl;hGFAP-GFP mice. (C) EdU labeling paradigm in Nestin-CreERT2;YFPfl mice. (D) YFP+EdU+ and YFP+EdU− cells in the cortex and corpus at 2 days and 4 days after stroke. The inset shows higher magnification of the boxed cell (n.s. = pctx_2d_vs_4d = 0.6644, unpaired t test, t(8) = 0.4504, data represent ±SEM, n2d_ctx = 5 mice, and n4d_ctx = 6 mice and n.s. = pcc_2d_vs_4d = 0.0883, unpaired t test with Welch’s correction, t(5) = 2.113, data represent ±SEM, n2d_cc = 4 mice, and n4d_cc = 6 mice. (E) YFP+DCX+ and YFP+DCX− cells in the cortex and corpus callosum at 2 days and 4 days after stroke. (F) YFP expression in TAM fed, uninjured controls. The white and yellow insets show higher magnification photos of regions in dashed white and yellow boxes (cortex = ctx, corpus callosum = cc, subventricular zone = SVZ, tdTOMATO = TOM, and tamoxifen = TAM). Cell Stem Cell 2015 17, 624-634DOI: (10.1016/j.stem.2015.08.002) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Migratory SVZ Cells Give Rise to Reactive Astrocytes at the Lesion Site (A) Lineage tracing of SVZ cells using Nestin-CreERT2;YFPfl mice. The YFP+ cells in the parenchyma are from 4 days to 2 months after stroke. (B) Ratio of SVZ derived RAs (YFP+GFAP+/YFPtotal or TOM+GFP+/TOMtotal) in Nestin-CreERT2;YFPfl and Nestin-CreERT2;tdTomatofl;hGFAP-GFP mice (∗ = p < 0.05, ∗∗∗ = p < 0.001, one-way ANOVA with Tukey’s post hoc, F(3,19) YFP+GFAP+/YFPtotal = 19.87, data represent ±SEM, n4d = 6 mice, n7d = 7 mice, n10d = 7 mice and one-way ANOVA with Tukey’s post hoc, F(3,10) Tom+GFP+/Tomtotal = 5.5852 data represent ±SEM, n4d = 3 mice, n7d = 4 mice, and n10d = 4 mice). (C) Percentage of multipotent, bipotent, and astrocyte only ctxNSs (∗∗ = p < 0.01, ∗∗∗ = p < 0.001, and ∗∗∗∗ = p < 0.0001) (days, d) (z-test for independent proportions, z4dvs7dmultipotent = 3.123 z4dvs10dmultipotent = 3.9155, z7dvs10dmultipotent = 0.8007, z4dvs7dastrocyte_only = 3.5543 z4dvs10dastrocyte_only = 3.9506, z7dvs10dastrocyte_only = −0.3105, data represent n4d = 14 NSs, n7d = 12 NSs, and n10d = 15 NSs) (tdTOMATO = TOM, subventricular zone = SVZ, lateral ventricle = lv, cortex = ctx, corpus callosum = cc, and tamoxifen = TAM). See also Figure S2. Cell Stem Cell 2015 17, 624-634DOI: (10.1016/j.stem.2015.08.002) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 Forced Transcription Factor Expression Converts SVZ Derived Reactive Astrocytes to Neurons (A) Lineage tracing of SVZ derived RAs in vitro using Nestin-CreERT2;YFPfl mice. (B) YFP expression in GFAP+ and S100β+ astrocytes. (C) Pictures from ImageStream analysis of MACS sorted RMS, stroke-injured cortex, and uninjured contralateral cortex. (D) Experimental design for assessing the presence of a residual precursor cell in RA culture conditions. (E) Numbers of NSs derived from plating cortex and SVZ in RA conditions. (F) Experimental design for conversion using GFAP-CreERT2;YFPfl mice. The picture shows YFP+ astrocytes after 4-OH-TAM induced recombination. (G) TUJ1+ neuron after expression of PB-tet-O-Ascl1-T2A-Bfp in YFP labeled astrocytes in vitro. (H) Percent neuronal conversion. The blue dots represent experiments using PB-tet-O-Ascl1-T2A-Bfp (n = 3; TUJ1+YFP+BFP+ cells/YFP+BFP+ cells). The red dots represent experiments using CAG-Ascl1-IRES-Dsred (n = 3; Tuj1+YFP+DSRED+ cells/YFP+DSRED+ cells). (I) Experimental design for in vivo conversion using Nestin-CreERT2;YFPfl mice. (J) DCX+ neuroblasts after expression of AAV5-Gfap-Ascl1-T2A-mCherry. The higher magnification is shown of the boxed cell. (K) NeuN+ neurons after expression of AAV5-Gfap-Ascl1-T2A-mCherry. The higher magnification is shown of the boxed cell. (L) Percent neuronal conversion (n = 4, mCHERRY+DCX+/mCHERRY+; n = 4 mCHERRY+NEUN+/mCHERRY+) (tamoxifen = TAM, doxycycline = dox, hydroxytamoxifen = 4-OH-TAM, cortex = ctx, rostral migratory stream = RMS, brightfield = BF, and mCherry = CHERRY). See also Figure S3. Cell Stem Cell 2015 17, 624-634DOI: (10.1016/j.stem.2015.08.002) Copyright © 2015 Elsevier Inc. Terms and Conditions