CEPC 650MHz High Efficiency Klystron R&D

Slides:



Advertisements
Similar presentations
Areal RF Station A. Vardanyan RF System The AREAL RF system will consist of 3 RF stations: Each RF station has a 1 klystron, and HV modulator,
Advertisements

Progress of the sub-harmonic bunching system (i.e. upgrading progress of BEPCII present bunching system) Pei Shilun for the SHBS team Accelerator center,
Normal-Conducting Photoinjector for High Power CW FEL Sergey Kurennoy, LANL, Los Alamos, NM, USA An RF photoinjector capable of producing high continuous.
PEP Super-B High Power RF Peter McIntosh SLAC Super-B Factory Workshop in Hawaii April 2005 University of Hawaii.
Cell-Coupled Drift Tube Linac M. Pasini, CERN AB-RF LINAC4 Machine Advisory Committee 1 st meeting CERN January 29-30, 2008.
1.0 MW / 175 MHz Source for IFMIF: a study of alternatives
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Multiple Beam Klystrons for Accelerators and Collider
February 17-18, 2010 R&D ERL Alex Zaltsman R&D ERL High Power RF Systems Alex Zaltsman February 17-18, 2010 High Power RF Systems.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Sergey Belomestnykh SRF and RF systems.
1.Institute For Research in Fundamental Science (IPM), Tehran, Iran 2.CERN, Geneva, Switzerland Mohsen Dayyani Kelisani Thermionic & RF Gun Simulations.
CLIC Project meting #16. June 2014 I. Syratchev High efficiency power sources I. Syratchev, CERN.
Development of the Room Temperature CH-DTL in the frame of the HIPPI-CARE Project Gianluigi Clemente,
The selection of operating mode for 10MW L-band MBK with high efficiency Institute of Electronics, Chinese Academy of Sciences Beijing, China November.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Ding Sun and David Wildman Fermilab Accelerator Advisory Committee
Development of The Klystrons for J-PARC Project
Study Plan of Clearing Electrode at KEKB Y. Suetsugu, H. Fukuma (KEK), M. Pivi, W. Lanfa (SLAC) 2007/12/191 ILC DR Mini Work Shop (KEK) Dec.
1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.
A 350 MHz, 200 kW CW, Multiple Beam IOT Lawrence Ives, Michael Read, David Marsden, R. H. Jackson, Thuc Bui Calabazas Creek Research, Saratoga, CA. USA.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
Status of the 1.2 MW MB-IOT for ESS Morten Jensen CLIC Workshop 2016, January, CERN.
RF System and EBIS of RAON
PPM Focusing in Klystrons Michael Read Calabazas Creek Research Presented at CERN Aug 30, 2013
RFQ coupler S. Kazakov 07/28/2015. Requirements: Coupler requirements Expected problems: Heating (loop, ceramic window, etc.) Multipactor Solutions: Appropriate.
High-efficiency L-band klystron development for the CLIC Drive Beam High-efficiency L-band klystron development for the CLIC Drive Beam CLIC workshop,
Areal RF Station A. Vardanyan
High Efficiency Klystron
Prospects for developing new tubes
How does a klystron work? TE-MPE Section Meeting Karolina Kulesz
CW couplers; KEK injector couplers Eiji Kako (KEK, Japan)
High efficiency work and MBK development for accelerators
Bunching system for SPES project
Development of high-power IOTs as an efficient alternative to klystrons Morten Jensen Energy for Sustainable Science 24 October 2013, CERN.
XFEL beamline loads and HOM coupler for CW
Prospects for high-efficiency klystrons
HPRFM-2013 Simulation Studies on a 10 kW CW Magnetron for Industrial Application   S.K. Vyas, N Shekhawat, S Maurya, V.V.P. Singh MWT Division, Central.
CEPC 650MHz High Efficiency Klystron R&D
Development of X-band 50MW klystron in BVERI
CEPC APDR Study Zhenchao LIU
A frequency choice for the SPL machine: Impact on hardware
Status of the CLIC main beam injectors
NC Accelerator Structures
Physics design on Injector-1 RFQ
CEPC injector high field S-band accelerating structure design and R&D
Jiyuan Zhai ( IHEP ) TTC Meeting, JLAB, 6 Nov 2012
Work summary in 2016 Hongjuan Zheng CEPC SRF WG Meeting
High Efficiency X-band Klystron Design Study
Progress on the CEPC 650MHz/800kW klystron development
CEPC RF Power Sources System
ERL Main-Linac Cryomodule
HIE-LINAC status report
ADS Accelerator Program in China
Some CEPC SRF considerations
CEPC 650MHz Klystron Development
CEPC Main Ring Cavity Design with HOM Couplers
CEPC Injector positron source
CEPC APDR and PDR scheme
CEPC advanced partial double ring scheme
Physics Design on Injector I
CEPC Waveguide HOM 5-cell and 2-cell Cavity Study and EP Facility
CEPC Ring RF System Jiyuan Zhai (IHEP) Workshop on the Circular Electron Positron Collider Rome, May 25, 2018.
CEPC APDR SRF considerations(4) -LEP Cavity Voltage &BBU
LCLS Injector/Diagnostics David H. Dowell, SLAC April 24, 2002
CEPC RF Power Source System
CEPC APDR and PDR scheme
ERL Director’s Review Main Linac
CEPC SRF Parameters (100 km Main Ring)
RF Parameters for New 2.2 km MEIC Design
Presentation transcript:

CEPC 650MHz High Efficiency Klystron R&D Zusheng ZHOU(周祖圣) Beihang Uniersity Sep. 2, 2016

Contents ■Design proposal ■R&D Progress ■Summary

Design proposal

(top parameters of D. Wang 20160329) CEPC Main Ring SRF parameters Parameters (top parameters of D. Wang 20160329) H (Pre-CDR) W Z 650 MHz cavity (bulk Nb) 5-cell 2-cell Cavity number 384 480 160 32 VRF (GeV) 7 3.65 0.82 0.13 Eacc (MV/m) 15.9 16.5 11.1 8.6 Q0 @ 2 K 4E10 2E10 Cryomodule number 96 80 16 Max. phase shift of 4+4 trains (deg) / 3.9 7.4 12.9 RF power c.w. / cavity (kW) 276 215 224* 254* Cavity number per klystron 2 2 / 4 Total klystron number 192 HOM power / cav. (kW) 3.6 0.8 0.4 Total RF power (MW) 106 104 36* 8* Total cav. wall loss @ 4.5 K eq. (kW) 22.2 24

(top parameters of D. Wang 20160329) CEPC Main Ring SRF parameters Parameters (top parameters of D. Wang 20160329) H (Pre-CDR) W Z 650 MHz cavity (bulk Nb) 5-cell 2-cell Cavity number 384 480 160 32 VRF (GeV) 7 3.65 0.82 0.13 Eacc (MV/m) 15.9 16.5 11.1 8.6 Q0 @ 2 K 4E10 2E10 Cryomodule number 96 80 16 Max. phase shift of 4+4 trains (deg) / 3.9 7.4 12.9 RF power c.w. / cavity (kW) 276 215 224* 254* Cavity number per klystron 2 2 / 4 Total klystron number 192 HOM power / cav. (kW) 3.6 0.8 0.4 Total RF power (MW) 106 104 36* 8* Total cav. wall loss @ 4.5 K eq. (kW) 22.2 24

Klystron output power (kW) 1 klystron power 2 cavities CEPC Main Ring RF Power source Baseline Considering klystron lifetime and power redundancy, 2 cavities will be powered with a CW klystron capable to deliver more than 800 kW. Parameters Value Operation frequency 650MHz+/-0.5MHz RF input power (kW) 280 CW(250) RF source number 160 Klystron output power (kW) 800 CW 1 klystron power 2 cavities

Klystron key design parameters Centre frequency (MHz) CEPC Main Ring RF Power source Klystron key design parameters Parameters Now Future Centre frequency (MHz) 650+/-0.5 Output power (kW) 800 Beam voltage (kV) 80 70 Beam current (A) 16 15 Efficiency (%) 65

Klystron key design parameters Centre frequency (MHz) CEPC Main Ring RF Power source Klystron key design parameters Parameters Now Future Centre frequency (MHz) 650+/-0.5 Output power (kW) 800 Beam voltage (kV) 80 70 Beam current (A) 16 15 Efficiency (%) 65 How to do?

Klystron key design parameters Centre frequency (MHz) CEPC Main Ring RF Power source Klystron key design parameters Parameters Now Future Centre frequency (MHz) 650+/-0.5 Output power (kW) 800 Beam voltage (kV) 80 70 Beam current (A) 16 15 Efficiency (%) 65 How to do? There are some R&D work supported by IHEP innovation funds.

R&D Progress

Klystron Schedule and strategy Because of klystron efficiency is more than 80%, in order to fulfill this program, there may have following problems: 1) No experience and no related infrastructure on this kind of klystron; 2) Design and simulation are not enough and matured; 3) Let’s start from beam tester, classical design and currently progressed design(higher efficiency design).

Short term Schedule

Klystron Schedule and strategy(2) Merits Saving the money Saving the time Possible to try 2 or 3 designs (1) Beam tester (2) #1 prototype (3) #2 prototype

Simulation Results using DGUN Triode gun(anode modulated)with f10 hole DGUN simulation result : Beam Diameter=17.8mm Current=15.12 A Perveance= 1.43 μA/V3/2 Vc =-81.5kV VMA=-48.0kV 1.77 kV/mm on Anode 3.94 kV/mm on BFE 2.51 kV/mm on M.Anode 54 mm 35.6 mm 0 4 2 6 5 10 15 25 30 35 Cathode R(mm) Current Density (mA/mm2) 20

Simulation Results using EGUN Triode gun (anode modulated)with f10 hole EGUN simulation result : Beam Diameter=17.7mm Current=14.88 A Perveance= 1.41 μA/V3/2

Simulation Results using CST CST simulation result : Beam Diameter=17.7mm Current=14.88 A Perveance= 1.41 μA/V3/2

Simulation Results Comparison Electron Gun Vc =-81.5kV, VMA=-48.0kV Type DGUN EGUN CST Current(A) 15.12 14.88 Beam DIA(mm) 17.8 17.7 Perveance(μA/V3/2) 1.43 1.41

Simulation Results Comparison Magnet field Amplitude of magnetic field Bz on axis

Ripple rate = 8.0%

Beam Optics for Collector

Gun assembly with Drift Tube and Collector 500 1000 1500 2000 2500 4000 3500 3000 Z (mm) Solenoid

HV Gun Envelop for Electron Gun

Collector Design and Simulation Collector shape and beam dissipation optimization J collector optimization using universal beam spread curve collector optimization using EGUN code Analytic design Numerical design Collector Length 2147mm 1912mm Collector radius 210mm Total Beam power 1231kW 1230kW Capability of power density in collector 150W/cm2 Max power density in collector 197W/cm2 207W/cm2 Crosscheck of beam trajectory with EGUN and MAGIC

Collector Design and Simulation(2) Groove dimensions optimization Groove number Groove dimensions(a:b) Total water flow rate Water pressure loss for ideal smooth surface 180 1:2 1400kg/min 2.34E+4 Pa Contour of temperature and water pressure loss

Collector Design and Simulation(3) Collector Thermal analysis Groove structure for 2 meter tapered collector in Ansys-CFX contour of temperature on inner surface of copper domain contour of temperature of water domain

Collector Design and Simulation(4) Collector geometry of tapered part 2030mm A B C D E Geometry of collector tapered part Section A B C D E groove number 180 150 120 60 40

RF Section Design and Simulation The results of 1D code AJDISK indicate that the efficiency is 73% and the 1dB bandwidth is more than 2 MHz .

RF Section Design and Simulation(2) All six cavities have been designed and optimized using CST and HFSS. Input and output cavities electromagnetic field

RF Section Design and Simulation(3) The simulation results of two-cavity klystron in 1D-code AJDISK and 3D-code CST are in good agreement, which indicate that 3D simulation in CST is feasible. The results of two cavity klystron in CST

Current Status -Beam tester Concept Simulation Gun HV Seal Collector Drawing Gun HV Seal Drawing

Current Status -Beam tester The drawing has almost completed! It’s ready for manufacturing!!

Summary The design of the electron gun and collector has been completed; RF Section for classical design klystron is almost completed; Mechanical design for beam tester is also completed; Pushing procurement and manufacture for beam tester as soon as possible; Mechanical design for classical design klystron is about to begin. RF Section for high efficiency design klystron is about to begin.

Thanks for your attention!