Control Systems With Embedded Implementation (CSEI)

Slides:



Advertisements
Similar presentations
Z- Transform and Its Properties
Advertisements

Lect.7 Steady State Error Basil Hamed
4. System Response This module is concern with the response of LTI system. L.T. is used to investigate the response of first and second order systems.
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
Control Systems With Embedded Implementation (CSEI) Dr. Imtiaz Hussain Assistant Professor
Lecture 19: Discrete-Time Transfer Functions
Lecture 9: Compensator Design in Frequency Domain.
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
Modern Control Systems (MCS)
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
1 Signals & Systems Spring 2009 Week 3 Instructor: Mariam Shafqat UET Taxila.
Properties and the Inverse of
Modern Control Systems (MCS)
SE 207: Modeling and Simulation Introduction to Laplace Transform
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
Control Systems With Embedded Implementation (CSEI)
ES97H Biomedical Signal Processing
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Intelligent Robot Lab Pusan National University Intelligent Robot Lab Chapter 7. Forced Response Errors Pusan National University Intelligent Robot Laboratory.
Control Systems Lect.3 Steady State Error Basil Hamed.
Control Systems (CS) Dr. Imtiaz Hussain Associate Professor Mehran University of Engineering & Technology Jamshoro, Pakistan
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Modern Control Systems (MCS) Dr. Imtiaz Hussain URL :
Digital and Non-Linear Control
Feedback Control Systems (FCS)
Block Diagram Representation of Control Systems
CHAPTER 5 Z-Transform. EKT 230.
Advanced Control Systems (ACS)
CEN352 Dr. Nassim Ammour King Saud University
Modern Control Systems (MCS)
Digital and Non-Linear Control
3.1 Introduction Why do we need also a frequency domain analysis (also we need time domain convolution):- 1) Sinusoidal and exponential signals occur.
Digital Control Systems (DCS)
Control Systems With Embedded Implementation (CSEI)
Digital Control Systems (DCS)
DNT Control Principle Steady-State Analysis DNT Control Principle.
Control Systems (CS) Lecture-12-13
Modern Control Systems (MCS)
Feedback Control Systems (FCS)
Feedback Control Systems (FCS)
Feedback Control Systems (FCS)
Modern Control Systems (MCS)
Modern Control Systems (MCS)
Modern Control Systems (MCS)
Digital Control Systems (DCS)
Digital Control Systems (DCS)
Modern Control Systems (MCS)
Modeling & Simulation of Dynamic Systems
Modern Control Systems (MCS)
Digital Control Systems (DCS)
Feedback Control Systems (FCS)
Digital Control Systems (DCS)
Feedback Control Systems (FCS)
Control Systems (CS) Lecture-6 Steady State Error Dr. Imtiaz Hussain
CHAPTER-6 Z-TRANSFORM.
Feedback Control Systems (FCS)
Control Systems (CS) Lecture-16 Steady State Error Dr. Imtiaz Hussain
Lecture 6: Time Domain Analysis and State Space Representation
Control Systems (CS) Lecture-4-5
Feedback Control Systems (FCS)
Modern Control Systems (MCS)
Control Systems (CS) Lecture (supplementary Slides)
Transfer Function and Stability of LTI Systems
Modern Control Systems (Pr)
Modern Control Systems (Pr)
IntroductionLecture 1: Basic Ideas & Terminology
Exercise 1 For the unit step response shown in the following figure, find the transfer function of the system. Also find rise time and settling time. Solution.
Presentation transcript:

Control Systems With Embedded Implementation (CSEI) Lecture-23-24 Time Response and Steady State Errors of Discrete Time Control Systems Dr. Imtiaz Hussain Assistant Professor email: imtiaz.hussain@faculty.muet.edu.pk URL :http://imtiazhussainkalwar.weebly.com/

Lecture Outline Introduction Time Response of DT System Examples Final Value Theorem Steady State Errors

Introduction The time response of a discrete-time linear system is the solution of the difference equation governing the system. For the linear time-invariant (LTI) case, the response due to the initial conditions and the response due to the input can be obtained separately and then added to obtain the overall response of the system. The response due to the input, or the forced response, is the convolution summation of its input and its response to a unit impulse.

Example-1 Given the discrete-time system Find the impulse response of the system. Taking z-transform ๐‘ฆ ๐‘˜+1 โˆ’0.5๐‘ฆ ๐‘˜ =๐‘ข ๐‘˜ Solution ๐‘ง๐‘Œ ๐‘ง โˆ’0.5๐‘Œ ๐‘ง =๐‘ˆ ๐‘ง ๐‘Œ(๐‘ง) ๐‘ˆ(๐‘ง) = 1 ๐‘งโˆ’0.5

Example-1 Since U(z)=1 Taking Inverse z-Transform ๐‘Œ(๐‘ง)= 1 ๐‘งโˆ’0.5 ๐‘ฆ ๐‘˜ = (0.5) ๐‘˜โˆ’1 , ๐‘˜โ‰ฅ0

Example-2 Given the discrete time system find the system transfer function and its response to a sampled unit step. The transfer function corresponding to the difference equation is ๐‘ฆ ๐‘˜+1 โˆ’๐‘ฆ ๐‘˜ =๐‘ข ๐‘˜+1 Solution ๐‘ง๐‘Œ ๐‘ง โˆ’๐‘Œ ๐‘ง =๐‘ง๐‘ˆ ๐‘ง ๐‘Œ(๐‘ง) ๐‘ˆ(๐‘ง) = ๐‘ง ๐‘งโˆ’๐‘ง

Example-2 Since U z = ๐‘ง ๐‘งโˆ’1 ๐‘ฆ ๐‘˜ =๐‘˜+1, ๐‘˜โ‰ฅ0 ๐‘Œ(๐‘ง)= ๐‘ง ๐‘งโˆ’1 ๐‘ˆ(๐‘ง) Taking Inverse z-Transform (time advance Property) ๐‘Œ(๐‘ง)= ๐‘ง ๐‘งโˆ’1 ๐‘ˆ(๐‘ง) ๐‘Œ(๐‘ง)= ๐‘ง ๐‘งโˆ’1 ร— ๐‘ง ๐‘งโˆ’1 ๐‘Œ(๐‘ง)=๐‘ง ๐‘ง (๐‘งโˆ’1) 2 ๐‘ฆ ๐‘˜ =๐‘˜+1, ๐‘˜โ‰ฅ0

Home Work Find the impulse, step and ramp response functions for the systems governed by the following difference equations. ๐‘ฆ ๐‘˜+1 โˆ’0.5๐‘ฆ ๐‘˜ =๐‘ข ๐‘˜ ๐‘ฆ ๐‘˜+2 โˆ’.01๐‘ฆ ๐‘˜+1 +0.8๐‘ฆ ๐‘˜ =๐‘ข(๐‘˜)

Final Value Theorem The final value theorem allows us to calculate the limit of a sequence as k tends to infinity, if one exists, from the z-transform of the sequence. If one is only interested in the final value of the sequence, this constitutes a significant short cut. The main pitfall of the theorem is that there are important cases where the limit does not exist. The two main case are An unbounded sequence An oscillatory sequence

Final Value Theorem If a sequence approaches a constant limit as k tends to infinity, then the limit is given by ๐‘“ โˆž = lim ๐‘˜โ†’โˆž ๐‘“ ๐‘˜ ๐‘“ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐น ๐‘ง ๐‘“ โˆž = lim ๐‘งโ†’1 (๐‘งโˆ’1)๐น ๐‘ง

Example-3 Verify the final value theorem using the z-transform of a decaying exponential sequence and its limit as k tends to infinity. The z-transform of an exponential sequence is Applying final value theorem Solution ๐น ๐‘ง = ๐‘ง ๐‘งโˆ’ ๐‘’ โˆ’๐‘Ž๐‘‡ ๐‘“ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐น ๐‘ง = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐‘ง ๐‘งโˆ’ ๐‘’ โˆ’๐‘Ž๐‘‡ ๐‘“ โˆž =0

Example-4 Obtain the final value for the sequence whose z-transform is Applying final value theorem ๐น ๐‘ง = ๐‘ง 2 (๐‘งโˆ’๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘)(๐‘งโˆ’๐‘) Solution ๐‘“ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐‘ง 2 (๐‘งโˆ’๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘)(๐‘งโˆ’๐‘) ๐‘“ โˆž = 1โˆ’๐‘Ž (1โˆ’๐‘)(1โˆ’๐‘)

Home work Find the final value of following z-transform functions if it exists. ๐น(๐‘ง)= ๐‘ง ๐‘ง 2 โˆ’1.2๐‘ง+0.2 ๐น(๐‘ง)= ๐‘ง ๐‘ง 2 โˆ’0.3๐‘ง+2

Steady State Error Consider the unity feedback block diagram shown in following figure. The error ratio can be calculated as Applying the final value theorem yields the steady-state error. ๐ธ(๐‘ง) ๐‘…(๐‘ง) = 1 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘’ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐ธ ๐‘ง

Steady state Error As with analog systems, an error constant is associated with each input (e.g., Position Error constant and Velocity Error Constant) Type number can be defined for any system from which the nature of the error constant can be inferred. The type number of the system is the number of unity poles in the system z-transfer function.

Position Error Constant ๐พ ๐‘ Error of the system is given as Where Therefore, the steady state error due to step input is given as ๐ธ(๐‘ง)= ๐‘…(๐‘ง) 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘… ๐‘ง = ๐‘ง ๐‘งโˆ’1 ๐‘’ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง 1 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘ง ๐‘งโˆ’1 ๐‘’ โˆž = lim ๐‘งโ†’1 1 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง)

Position Error Constant ๐พ ๐‘ Position error constant ๐พ ๐‘ is given as Steady state error can be calculated as ๐‘’ โˆž = lim ๐‘งโ†’1 1 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘’ โˆž = 1 1+ ๐พ ๐‘

Velocity Error Constant ๐พ ๐‘ฃ Error of the system is given as Where Therefore, the steady state error due to step input is given as ๐ธ(๐‘ง)= ๐‘…(๐‘ง) 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘… ๐‘ง = ๐œ๐‘ง ๐‘งโˆ’1 2 ๐‘’ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง 1 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐œ๐‘ง ๐‘งโˆ’1 2 ๐‘’ โˆž = lim ๐‘งโ†’1 ๐œ ๐‘งโˆ’1 [1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ]

Velocity Error Constant ๐พ ๐‘ฃ ๐พ ๐‘ฃ is given as Steady state error due to sampled ramp input is given as ๐‘’ โˆž = lim ๐‘งโ†’1 ๐œ ๐‘งโˆ’1 [1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ] ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐‘’ โˆž = 1 ๐พ ๐‘ฃ

Example-5 Find the steady-state position error for the digital position control system with unity feedback and with the transfer functions For a sampled unit step input. For a sampled unit ramp input ๐พ ๐‘ and ๐พ ๐‘ฃ are given as ๐บ ๐‘๐ด๐‘† ๐‘ง = ๐พ(๐‘ง+๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘) ๐ถ ๐‘ง = ๐พ ๐‘ (๐‘งโˆ’๐‘) ๐‘งโˆ’๐‘ ,0<๐‘Ž,๐‘,๐‘<1 Solution ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง)

Example-5 ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ can be further evaluated as Corresponding steady state error is ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ = lim ๐‘งโ†’1 ๐พ(๐‘ง+๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘) ๐พ ๐‘ (๐‘งโˆ’๐‘) ๐‘งโˆ’๐‘ ๐พ ๐‘ = ๐พ(1+๐‘Ž) (1โˆ’1)(1โˆ’๐‘) ๐พ ๐‘ (1โˆ’๐‘) 1โˆ’๐‘ =โˆž ๐‘’ โˆž = 1 1+ ๐พ ๐‘ =0

Example-5 ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ฃ is evaluated as Corresponding steady state error is ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐พ(๐‘ง+๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘) ๐พ ๐‘ (๐‘งโˆ’๐‘) ๐‘งโˆ’๐‘ ๐พ ๐‘ฃ = 1 ๐œ ๐พ(1+๐‘Ž) (1โˆ’๐‘) ๐พ ๐‘ (1โˆ’๐‘) 1โˆ’๐‘ = ๐พ ๐พ ๐‘ (1+๐‘Ž) ๐œ(1โˆ’๐‘) ๐‘’ โˆž = 1 ๐พ ๐‘ฃ = ๐œ(1โˆ’๐‘) ๐พ ๐พ ๐‘ (1+๐‘Ž)

End of Lecture-2 To download this lecture visit http://imtiazhussainkalwar.weebly.com/ End of Lecture-2