PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field

Slides:



Advertisements
Similar presentations
Oregon Terascale Workshop March 7, 2011 Rick Field – Florida/CDF/CMSPage 1 Northwest Terascale Workshop Modeling Min-Bias and the Underlying Event Rick.
Advertisements

2012 Tel Aviv, October 15, 2012 Rick Field – Florida/CDF/CMSPage 1 Rick Field University of Florida Outline of Talk CMS at the LHC CDF Run 2 
Run 2 Monte-Carlo Workshop April 20, 2001 Rick Field - Florida/CDFPage 1 The Underlying Event in Hard Scattering Processes  The underlying event in a.
Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDFPage 1 The “Underlying Event” in Run 2 at CDF  Study the “underlying event” as defined by.
Workshop on Early LHC Physics May 6, 2009 Rick Field – Florida/CDF/CMSPage 1 Workshop on Early Physics Opportunities at the LHC Rick Field University of.
LHC2010 Conference at Michigan Ann Arbor MI, December 12, 2010 Rick Field – Florida/CDF/CMSPage 1 LHC First Data Rick Field University of Florida Outline.
St. Andrews, Scotland August 22, 2011 Rick Field – Florida/CDF/CMSPage Rick Field University of Florida Outline  Do we need a.
PIC 2011, Vancouver August 29, 2011 Rick Field – Florida/CDF/CMSPage 1 Physics in Collision Rick Field University of Florida Outline  Examine.
Fermilab Energy Scaling Workshop April 28, 2009 Rick Field – Florida/CDF/CMSPage 1 1 st Workshop on Energy Scaling in Hadron-Hadron Collisions Rick Field.
CDF Paper Seminar Fermilab - March 11, 2010 Rick Field – Florida/CDF/CMSPage 1 Sorry to be so slow!! Studying the “Underlying Event” at CDF CDF Run 2 “Leading.
University of Virginia April 10, 2012 Rick Field – Florida/CDF/CMSPage 1 a Rick Field University of Florida Outline  How Universal are the QCD MC Model.
ICHEP 2012 Melbourne, July 5, 2012 Rick Field – Florida/CDF/CMSPage 1 ICHEP 2012 Rick Field University of Florida Outline of Talk CMS at the LHC CDF Run.
Energy Dependence of the UE
Implications of First LHC Data: Underlying Event Measurements
YETI’11: The Standard Model at the Energy Frontier
The LHC Physics Environment
The “Underlying Event” CDF-LHC Comparisons
1st Workshop on Energy Scaling in Hadron-Hadron Collisions
“softQCD” and Correlations Rick Field & Nick Van Remortel
Physics and Techniques of Event Generators
Rick Field – Florida/CDF/CMS
Lake Louise Winter Institute
MB&UE Working Group Meeting UE Lessons Learned & What’s Next
University of Chicago Lecture 3: Tuning the Models
51st Cracow School of Theoretical Physics The Soft Side of the LHC
Toward an Understanding of Hadron-Hadron Collisions
The “Underlying Event” in Run 2 (CDF)
MB&UE Working Group Meeting CMS UE Data and the New Tune Z1
Predicting MB & UE at the LHC
Predicting “Min-Bias” and the “Underlying Event” at the LHC
Toward an Understanding of Hadron-Hadron Collisions
Energy Dependence of the “Underlying Event” Craig Group & David Wilson
Lake Louise Winter Institute
Modeling Min-Bias and Pile-Up University of Oregon February 24, 2009
Predicting “Min-Bias” and the “Underlying Event” at the LHC
YETI’11: The Standard Model at the Energy Frontier
Early Physics Measurements University of Florida October 2009
Predicting “Min-Bias” and the “Underlying Event” at the LHC
“Min-Bias” and the “Underlying Event” at CDF
Monte-Carlo Generators for CMS
Min-Bias and the Underlying Event in Run 2
Rick Field – Florida/CDF/CMS
The Tevatron Connection
“Min-Bias” and the “Underlying Event” in Run 2 at CDF and the LHC
Monte Carlos for the LHC
XXXIV International Meeting on Fundamental Physics
The Next Stretch of the Higgs Magnificent Mile
The LHC Physics Environment
The “Underlying Event” in Run 2 at CDF
RHIC & AGS Annual Users’ Meeting
CDF Run 2 Monte-Carlo Tunes
International Symposium on Multiparticle Dynamics
“Min-Bias” & “Underlying Event” at the Tevatron and the LHC
Multiple Parton Interactions and the Underlying Event
The “Underlying Event” CDF-LHC Comparisons
Rick Field – Florida/CDF/CMS
Toward an Understanding of Hadron-Hadron Collisions
QCD Monte-Carlo Generators in Run 2 at CDF
“Min-Bias” and the “Underlying Event”
The Underlying Event in Hard Scattering Processes
Review of the QCD Monte-Carlo Tunes
Perspectives on Physics and on CMS at Very High Luminosity
Physics of the Underlying Event
PYTHIA 6.2 “Tunes” for Run II
Rick Field - Florida/CDF
The “Underlying Event” at CDF and CMS
Workshop on Early Physics Opportunities at the LHC
The Underlying Event in Hard Scattering Processes
b-Quark Production at the Tevatron
Rick Field – Florida/CDF/CMS
Presentation transcript:

PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field University of Florida Outline of Talk Studying the “underlying event” at the Tevatron. The CDF PYTHIA 6.2 tunes. University of Florida November 2011 How well did we do at predicting the behavior of the “underlying event” at 900 GeV and 7 TeV? The “underlying event” in Z-boson production at the Tevatron and the LHC. Homework Assignment (optional). www.phys.ufl.edu/~rfield/cdf/UF-SM_RickField_11-7-11.ppt PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

QCD Monte-Carlo Models: High Transverse Momentum Jets “Hard Scattering” Component “Underlying Event” Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scattering and add initial and final-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial and final-state radiation. The “underlying event” is an unavoidable background to most collider observables and having good understand of it leads to more precise collider measurements! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Proton-Proton Collisions stot = sEL + sIN stot = sEL + sSD + sDD + sHC ND “Inelastic Non-Diffractive Component” The “hard core” component contains both “hard” and “soft” collisions. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

The Inelastic Non-Diffractive Cross-Section Occasionally one of the parton-parton collisions is hard (pT > ≈2 GeV/c) Majority of “min-bias” events! “Semi-hard” parton-parton collision (pT < ≈2 GeV/c) + + + + … Multiple-parton interactions (MPI)! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

The “Underlying Event” Select inelastic non-diffractive events that contain a hard scattering Hard parton-parton collisions is hard (pT > ≈2 GeV/c) 1/(pT)4→ 1/(pT2+pT02)2 “Semi-hard” parton-parton collision (pT < ≈2 GeV/c) The “underlying-event” (UE)! + + + … Given that you have one hard scattering it is more probable to have MPI! Hence, the UE has more activity than “min-bias”. Multiple-parton interactions (MPI)! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Model of sND + + + + … 1/(pT)4→ 1/(pT2+pT02)2 Allow leading hard scattering to go to zero pT with same cut-off as the MPI! Model of the inelastic non-diffractive cross section! 1/(pT)4→ 1/(pT2+pT02)2 “Semi-hard” parton-parton collision (pT < ≈2 GeV/c) + + + + … Multiple-parton interactions (MPI)! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

MPI, Pile-Up, and Overlap MPI: Multiple Parton Interactions MPI: Additional 2-to-2 parton-parton scatterings within a single hadron-hadron collision. Pile-Up Proton Proton Proton Proton Interaction Region Dz Pile-Up: More than one hadron-hadron collision in the beam crossing. Overlap Overlap: An experimental timing issue where a hadron-hadron collision from the next beam crossing gets included in the hadron-hadron collision from the current beam crossing because the next crossing happened before the event could be read out. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Traditional Approach CDF Run 1 Analysis Charged Particle Df Correlations PT > PTmin |h| < hcut Leading Calorimeter Jet or Leading Charged Particle Jet or Leading Charged Particle or Z-Boson “Transverse” region very sensitive to the “underlying event”! Look at charged particle correlations in the azimuthal angle Df relative to a leading object (i.e. CaloJet#1, ChgJet#1, PTmax, Z-boson). For CDF PTmin = 0.5 GeV/c hcut = 1. Define |Df| < 60o as “Toward”, 60o < |Df| < 120o as “Transverse”, and |Df| > 120o as “Away”. All three regions have the same area in h-f space, Dh×Df = 2hcut×120o = 2hcut×2p/3. Construct densities by dividing by the area in h-f space. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

ISAJET 7.32 (without MPI) “Transverse” Density ISAJET uses a naïve leading-log parton shower-model which does not agree with the data! ISAJET “Hard” Component February 25, 2000 Beam-Beam Remnants Plot shows average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) compared to the QCD hard scattering predictions of ISAJET 7.32 (default parameters with PT(hard)>3 GeV/c) . The predictions of ISAJET are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

HERWIG 6.4 (without MPI) “Transverse” Density HERWIG uses a modified leading-log parton shower-model which does agrees better with the data! HERWIG Beam-Beam Remnants “Hard” Component Plot shows average “transverse” charge particle density (|h|<1, pT>0.5 GeV) versus PT(charged jet#1) compared to the QCD hard scattering predictions of HERWIG 5.9 (default parameters with PT(hard)>3 GeV/c without MPI). The predictions of HERWIG are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Tuning PYTHIA 6.2: Multiple Parton Interaction Parameters Default Description PARP(83) 0.5 Double-Gaussian: Fraction of total hadronic matter within PARP(84) PARP(84) 0.2 Double-Gaussian: Fraction of the overall hadron radius containing the fraction PARP(83) of the total hadronic matter. PARP(85) 0.33 Probability that the MPI produces two gluons with color connections to the “nearest neighbors. PARP(86) 0.66 Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs. PARP(89) 1 TeV Determines the reference energy E0. PARP(82) 1.9 GeV/c The cut-off PT0 that regulates the 2-to-2 scattering divergence 1/PT4→1/(PT2+PT02)2 PARP(90) 0.16 Determines the energy dependence of the cut-off PT0 as follows PT0(Ecm) = PT0(Ecm/E0)e with e = PARP(90) PARP(67) 1.0 A scale factor that determines the maximum parton virtuality for space-like showers. The larger the value of PARP(67) the more initial-state radiation. Hard Core Determines the energy dependence of the MPI! Determine by comparing with 630 GeV data! Affects the amount of initial-state radiation! Take E0 = 1.8 TeV Reference point at 1.8 TeV PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

PYTHIA default parameters PYTHIA 6.206 Defaults MPI constant probability scattering PYTHIA default parameters Parameter 6.115 6.125 6.158 6.206 MSTP(81) 1 MSTP(82) PARP(81) 1.4 1.9 PARP(82) 1.55 2.1 PARP(89) 1,000 PARP(90) 0.16 PARP(67) 4.0 1.0 Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of PYTHIA 6.206 (PT(hard) > 0) using the default parameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L. Default parameters give very poor description of the “underlying event”! Note Change PARP(67) = 4.0 (< 6.138) PARP(67) = 1.0 (> 6.138) PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Run 1 PYTHIA Tune A PYTHIA 6.206 CTEQ5L CDF Default Feburary 25, 2000! PYTHIA 6.206 CTEQ5L Parameter Tune B Tune A MSTP(81) 1 MSTP(82) 4 PARP(82) 1.9 GeV 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(67) 4.0 Run 1 Analysis Plot shows the “transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA 6.206 (CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)). Old PYTHIA default (more initial-state radiation) Old PYTHIA default (more initial-state radiation) New PYTHIA default (less initial-state radiation) New PYTHIA default (less initial-state radiation) PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

“Transverse” Charged Densities Energy Dependence Increasing e produces less energy dependence for the UE resulting in less UE activity at the LHC! Lowering PT0 at 630 GeV (i.e. increasing e) increases UE activity resulting in less energy dependence. Shows the “transverse” charged PTsum density (|h|<1, PT>0.4 GeV) versus PT(charged jet#1) at 630 GeV predicted by HERWIG 6.4 (PT(hard) > 3 GeV/c, CTEQ5L) and a tuned version of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set A, e = 0, e = 0.16 (default) and e = 0.25 (preferred)). Also shown are the PTsum densities (0.16 GeV/c and 0.54 GeV/c) determined from the Tano, Kovacs, Huston, and Bhatti “transverse” cone analysis at 630 GeV. Rick Field Fermilab MC Workshop October 4, 2002! Reference point E0 = 1.8 TeV PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Tune A energy dependence! PYTHIA 6.2 Tunes All use LO as with L = 192 MeV! Parameter Tune AW Tune DW Tune D6 PDF CTEQ5L CTEQ6L MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 1.0 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 4.0 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 UE Parameters Uses CTEQ6L Tune A energy dependence! ISR Parameter Intrinsic KT PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

ATLAS energy dependence! PYTHIA 6.2 Tunes All use LO as with L = 192 MeV! Parameter Tune DWT Tune D6T ATLAS PDF CTEQ5L CTEQ6L MSTP(81) 1 MSTP(82) 4 PARP(82) 1.9409 GeV 1.8387 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.33 PARP(86) 0.66 PARP(89) 1.96 TeV 1.0 TeV PARP(90) 0.16 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 5.0 UE Parameters Tune B Tune AW Tune BW Tune A ATLAS energy dependence! ISR Parameter Tune DW Tune D6 Tune D Tune D6T Intrinsic KT PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

“Transverse” Charged Density Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 1) at 7 TeV as defined by PTmax, PT(chgjet#1), and PT(muon-pair) from PYTHIA Tune DW at the particle level (i.e. generator level). Charged particle jets are constructed using the Anti-KT algorithm with d = 0.5. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Min-Bias “Associated” Charged Particle Density LHC14 LHC10 LHC7 Tevatron 900 GeV RHIC 0.2 TeV → 1.96 TeV (UE increase ~2.7 times) 1.96 TeV → 14 TeV (UE increase ~1.9 times) RHIC Tevatron LHC Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 0.2 TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level). Linear scale! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Min-Bias “Associated” Charged Particle Density LHC14 LHC10 LHC7 Tevatron 900 GeV RHIC 7 TeV → 14 TeV (UE increase ~20%) LHC7 LHC14 Linear on a log plot! Shows the “associated” charged particle density in the “transverse” region as a function of PTmax for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 0.2 TeV, 0.9 TeV, 1.96 TeV, 7 TeV, 10 TeV, 14 TeV predicted by PYTHIA Tune DW at the particle level (i.e. generator level). Log scale! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS Conclusions November 2009 We are making good progress in understanding and modeling the “underlying event”. RHIC data at 200 GeV are very important! The new Pythia pT ordered tunes (py64 S320 and py64 P329) are very similar to Tune A, Tune AW, and Tune DW. At present the new tunes do not fit the data better than Tune AW and Tune DW. However, the new tune are theoretically preferred! It is clear now that the default value PARP(90) = 0.16 is not correct and the value should be closer to the Tune A value of 0.25. The new and old PYTHIA tunes are beginning to converge and I believe we are finally in a position to make some legitimate predictions at the LHC! All tunes with the default value PARP(90) = 0.16 are wrong and are overestimating the activity of min-bias and the underlying event at the LHC! This includes all my “T” tunes and the (old) ATLAS tunes! UE&MB@CMS Need to measure “Min-Bias” and the “underlying event” at the LHC as soon as possible to see if there is new QCD physics to be learned! PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

“Transverse” Charged Particle Density Leading Charged Particle Jet, chgjet#1. Prediction! Leading Charged Particle, PTmax. Fake data (from MC) at 900 GeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The fake data (from PYTHIA Tune DW) are generated at the particle level (i.e. generator level) assuming 0.5 M min-bias events at 900 GeV (361,595 events in the plot). Rick Field MB&UE@CMS Workshop CERN, November 6, 2009 PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

“Transverse” Charge Density Rick Field MB&UE@CMS Workshop CERN, November 6, 2009 factor of 2! Prediction! 900 GeV → 7 TeV (UE increase ~ factor of 2) LHC 900 GeV LHC 7 TeV ~0.4 → ~0.8 Shows the charged particle density in the “transverse” region for charged particles (pT > 0.5 GeV/c, |h| < 2) at 900 GeV and 7 TeV as defined by PTmax from PYTHIA Tune DW and at the particle level (i.e. generator level). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

“Transverse” Charged Particle Density Monte-Carlo! Real Data! Fake data (from MC) at 900 GeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The fake data (from PYTHIA Tune DW) are generated at the particle level (i.e. generator level) assuming 0.5 M min-bias events at 900 GeV (361,595 events in the plot). CMS preliminary data at 900 GeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation (216,215 events in the plot). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

“Transverse” Charged PTsum Density Monte-Carlo! Real Data! Fake data (from MC) at 900 GeV on the “transverse” charged PTsum density, dPT/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The fake data (from PYTHIA Tune DW) are generated at the particle level (i.e. generator level) assuming 0.5 M min-bias events at 900 GeV (361,595 events in the plot). CMS preliminary data at 900 GeV on the “transverse” charged PTsum density, dPT/dhdf, as defined by the leading charged particle (PTmax) and the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation (216,215 events in the plot). PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS PYTHIA Tune DW CMS ATLAS CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation. ATLAS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle (PTmax) for charged particles with pT > 0.5 GeV/c and |h| < 2.5. The data are corrected and compared with PYTHIA Tune DW at the generator level. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS PYTHIA Tune DW Ratio CMS CMS CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation. Ratio of CMS preliminary data at 900 GeV and 7 TeV on the “transverse” charged particle density, dN/dhdf, as defined by the leading charged particle jet (chgjet#1) for charged particles with pT > 0.5 GeV/c and |h| < 2. The data are uncorrected and compared with PYTHIA Tune DW after detector simulation. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS PYTHIA Tune DW How well did we do at predicting the “underlying event” at 900 GeV and 7 TeV? Tune DW Tune DW I am surprised that the Tunes did not do a better job of predicting the behavior of the “underlying event” at 900 GeV and 7 TeV! Tune DW PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS PYTHIA Tune DW How well did we do at predicting the “underlying event” at 900 GeV and 7 TeV? Tune DW Tune DW I am surprised that the Tunes did as well as they did at predicting the behavior of the “underlying event” at 900 GeV and 7 TeV! Tune DW PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

How Universal are the Tunes? Do we need a separate tune for each center-of-mass energy? 900 GeV, 1.96 TeV, 7 TeV, etc. PYTHIA Tune DW did a nice (although not perfect) job predicting the LHC Jet Production and Drell-Yan UE data. I am still hoping for a single tune that will describe all energies! Do we need a separate tune for each hard QCD subprocess? Jet Production, Drell-Yan Production, etc. Color Connections The same tune can describe both Jet Production and Drell-Yan! PARP(90) Do we need separate tunes for “Min-Bias” (MB) and the “underlying event” (UE) in a hard scattering process? Diffraction PHTHIA Tune Z1 does fairly well at both the UE and MB, but you cannot expect such a naïve approach to be perfect! PARP(82) PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

QCD Monte-Carlo Models: Lepton-Pair Production “Hard Scattering” Component “Underlying Event” Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial-state radiation. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Charged Particle Density New Large increase in the UE in going from 1.96 TeV to 7 TeV as predicted by PYTHIA Tune DW! CMS CDF: Proton-Antiproton Collisions at 1.96 GeV Lepton Cuts: pT > 20 GeV |h| < 1.0 Mass Cut: 70 < M(lepton-pair) < 110 GeV Charged Particles: pT > 0.5 GeV/c |h| < 1.0 CMS: Proton-Proton Collisions at 7 GeV Lepton Cuts: pT > 20 GeV |h| < 2.4 Mass Cut: 60 < M(lepton-pair) < 120 GeV Charged Particles: pT > 0.5 GeV/c |h| < 2.0 CDF data at 1.96 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 1 for Drell-Yan production as a function of PT(Z) for the “toward”, “away”, and “transverse” regions compared with PYTHIA Tune DW. CMS data at 7 TeV on the density of charged particles, dN/dhdf, with pT > 0.5 GeV/c and |h| < 2 for Drell-Yan production as a function of PT(Z) for the “toward”, “away”, and “transverse” regions compared with PYTHIA Tune DW. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

PYTHIA Tune DW CMS Overall PYTHIA Tune DW is in amazingly good agreement with the Tevatron Jet production and Drell-Yan data and did a very good job in predicting the LHC Jet production and Drell-Yan data! (although not perfect) CMS PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS Optional Homework Run PYTHIA Z-Boson Production at 7 TeV: MSEL=11, CKIN(1)=70.0, CKIN(2)=110.0 Run with two values of the MPI cut-off pT0 = PARP(82): 1.5 GeV/c and 3.0 GeV/c. Look at the overall number of outgoing stable particles and study how this depends on the MPI cut-off pT0. PHZ 6358 University of Florida November 7, 2011 Rick Field – Florida/CDF/CMS