Ultracold polar molecules in a 3D optical lattice

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Generation of short pulses
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Tunable Molecular Many-Body Physics and the Hyperfine Molecular Hubbard Hamiltonian Michael L. Wall Department of Physics Colorado School of Mines in collaboration.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
strongly interacting fermions: from spin mixtures to mixed species
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
A10 Designing spin-spin interactions in cold ion crystals
Magnetization dynamics in dipolar chromium BECs
Small fermionic systems : the common methods and challenges
Spin Polarization Spectroscopy of
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Resonant dipole-dipole energy transfer
Making cold molecules from cold atoms
Coupled atom-cavity system
Qiang Gu Ferromagnetism in Bose Systems Department of Physics
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
Cold atoms in Optical lattice, vibrational states, coherent control via interference between one- and two-phonon excitation, and a little bit about decoherence,
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Chromium Dipoles in Optical Lattices
Norm Moulton LPS 15 October, 1999
by Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L
Presentation transcript:

Ultracold polar molecules in a 3D optical lattice 颜波 Department of physics, Zhejiang University Hangzhou, China. 2016-6-27

Outline Why polar molecules Polar molecules in a 3D optical lattice Spin exchange interactions with polar molecules Increasing the lattice filling

Why molecules - Interaction effects Quantum gas microscope, Greiner group BEC-BCS crossover Jin group, JILA Penning trap of Be ions, Bollinger group Studying interactions Long range, anisotropic, dipole-dipole Interactions. Microscopy of Rydberg excitations, Bloch group Quantum chaos in Er, Ferlaino group KRb molecules

Create ultracold polar molecules w1 w2 3S 1S 1P Inter-nuclear distance R Energy v = 0, N = 0, J = 0 6000 K

How to create ultracold molecules Mg Li Yb Na Rb K Sr Ca Cs NaK RbCs J. W. Park, et al., PRL. 114, 205302 (2015) T. Takekoshi, et al., PRL 113, 205301 (2014) RbNa M. Y. Guo, et al., PRL. 116, 205303 (2016) P. K. Molony, et al., PRL 113, 255301 (2014)

Chemical reaction Ospelkaus et. al., Science 327, 853 (2010) Get figures from website Ospelkaus et. al., Science 327, 853 (2010) Ni et. al, Nature 464, 1324 (2010)

quantum chemistry z  E y x Ni, K. K. et al. Nature 464, 1324 (2010) de Miranda, M. H. G. et al. Nat. Phys. 7, 502(2011)

quantum Zeno effect

Loading into a 3D lattice 1,KRb is fermion, isolated in lattice. But dipolar interactions are not. 2, measure the lifetime. With or without E field, it is 20s. Chotia, et al., PRL 108, 080405 (2012)

Outline Why polar molecules Polar molecules in a 3D optical lattice Spin exchange interactions with polar molecules Increasing the lattice filling

dipole-dipole interactions nature communication 6391, 2014

q=0 term nature communication 6391, 2014

SOC term nature communication 6391, 2014

Energy level of KRb molecules Use ground and first excited rotational states |1,0> |1,-1> 270 kHz 200 kHz N = 1 ~2.28 GHz ~ N = 0 |0,0> Electronic, vibrational, rotational ground state

Quantum magnetism with polar molecules and Energy difference between Explain more here. Spin exchange (XY) A. V. Gorshkov, et al, Phys. Rev. A 84, 033619 (2011)

E field dependence J Jz Electric field V [arb. u.]

Probing the interactions Coherent Ramsey spectroscopy Initialize Read-out hold time T π/2 π/2 time 50Hz 5kHz

The single-particle dephasing Reduce the differential light shift. --magic angle Spin echo Initialize spin echo pulse Read-out π/2 π π/2 time

Differential light shift 270 kHz 70 kHz 2.23 GHz Also mention Achieve a >99% π-pulse fidelity

Experimental measurement Measure the trap frequency. Measure the trap frequencies of KRb and Rb. B. Neyunhuis, et al., PRL 109, 230403 (2012)

Band structure and parametric heating Optical lattices have band structure. Parametric heating 0 Erec 20 Erec 60 Erec Free particle Flat bands

Anisotropic polarizability Parametric heating in lattice (modulate the laser intensity for 5ms) |1,-1> |1,1> |1,0> 2.2 GHz |0,0> Rb B. Neyunhuis, PRL 109, 230403 (2012)

Anisotropic polarizability Ramsey spectroscopy B. Neyunhuis, et al., PRL 109, 230403 (2012)

Optimizing in a 3D lattice

Probing the interactions Coherent Ramsey spectroscopy Initialize spin echo pulse Read-out π/2 π π/2 time En.n. En.n. / 8 Dipole-dipole interactions remain

Spin echo spectroscopy Decoherence due to anisotropic And long range interactions.

Density-dependent decoherence Change molecular density by holding molecules in the lattice for certain time. Cluster expansion gives 6-10% filling Bo Yan, et al, Nature 501 521 (2013)

Oscillations in the contrast T (ms) Contrast Fitting function: Theory prediction: . We measure: . Bo Yan, et al, Nature 501 521 (2013)

|1,0> instead of |1,-1> B field B field |0,0> to |1,0> has higher spin exchange frequency (104Hz).

Spin echo for |1,0> f=107(3)Hz

Density dependence Collapse of the data |1,-1> |1,0> Molecule filling in lattice: 8% K. Hazzard, et. al., PRL 113, 195302 (2014)

WAHUHA pulse - Bo Yan, et al, Nature 501 521 (2013)

Suppressing the oscillations Ramsey pulse Spin echo pulse Multi-pulse Bo Yan, et al, Nature 501 521 (2013)

Outline Why polar molecules Polar molecules in a 3D optical lattice spin exchange interactions with polar molecules Increasing the lattice filling

Molecule filling in a 3D optical lattice Molecule filling effects the dynamics percolation threshold for infinite 3D system with nearest neighbor interaction ~0.3 5 t 53 t physics reason for percolation

General idea and strategy One Rb and one K in one lattice site. Rb multiple occupancy. K filling is low. overlap of N=1 regime for both Rb and K Challenges: Bosons and fermions require different conditions for N=1 shell. Entropy is different. Dual insulators

ideal condition No external trap heating higher band J. K. Freericks, et al, PRA 81, 011605 (2010)

External trap S. Moses, et al., (Accepted by Science)

Load the lattice at a=0 S. Moses, et al., Science, 350, 659 (2015) N_Rb=2.8-5.2e3 atoms S. Moses, et al., Science, 350, 659 (2015)

Cross the Feshbach resonance Rb |1,1>+K|9/2,-9/2> Rb |1,1>+K|9/2,-9/2> Rb |1,1>+K|9/2,-7/2> M. Kohl, et al., PRL. 94, 080403 (2005).

Increasing the filling Molecule filling in lattice ~ 30% Old result: 8% S. Moses, et al., Science, 350, 659 (2015)

Further work: Applying the E field J

Shift of microwave transition Energy Convert this to shift in electric field E-field The frequency shifted by about 60 kHz in 1.5 hours About a 1.5 V/cm shift

KRb generation 2 Much better control over the electric field ITO plates and four rods for flat fields and gradients Draw my own picture for the selection of pancakes

Much better optical access Glass cell from Precision glassblowing NA=0.53 microscope objective for imaging along gravity

Summary Chemical reactions Ultracold sample Tune aK-Rb N=1 for Rb and K Flip K spin Suppressed by a 3D lattice Control all degrees of freedom Spin-exchange interactions High lattice filling Many-body physics

Acknowledgements KRb Team Jun Ye Deborah Jin Steven Moses Jacob Covey Matthew Miecnikowski Zhengkun Fu Bo Yan Bryce Gadway Ana Maria Rey Murray Holland John Bohn Kaden Hazzard Bihui Zhu Michael Wall Johannes Schachenmayer Goulven Quéméner Michael Foss-Feig Mikhail Lukin Norman Yao Svetlana Kotochigova Alexander Petrov

Thanks

Tunneling induced loss

Effective loss rate Strong loss regime: - Multi-band - Single band B. Zhu et. al, (PRL)

Quantum Zeno scaling Tunneling dependence: change x-lattice depth On site loss dependence: change y,z-lattice depths

Quantum Zeno scaling Tunneling dependence: change x-lattice depth On site loss dependence: change y,z-lattice depths

Looking at the contrast decay Scan the phase of the final pulse to obtain a Ramsey fringe 1 1 Spin echo necessary to observe dipolar interactions Contrast curve decays and oscillates. B. Yan et al., Nature 501, 521-525 (2013)

Quantum magnetism with polar molecules A. V. Gorshkov, et al, Phys. Rev. A 84, 033619 (2011)

Geometrical factor

Dipole-dipole interactions PRA 76, 043604 (2007), Nat. Phys. 2, 341 (2006).