SPiiPlus Training Class

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2003 Chapter 3 Data Transmission.
Processes and Operating Systems
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 1 Embedded Computing.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
Custom Services and Training Provider Details Chapter 4.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Chapter 5 Input/Output 5.1 Principles of I/O hardware
Chapter 6 File Systems 6.1 Files 6.2 Directories
Copyright 2006 SPiiPlus Training Class Simple IB23810 Motor Setup.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
SPiiPlus Training Class
Pole Placement.
Break Time Remaining 10:00.
Announcements Homework 6 is due on Thursday (Oct 18)
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
SPiiPlus Feedback Tuning
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
SPiiPlus Training Class
LIAL HORNSBY SCHNEIDER
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
SPiiPlus Training Class
© 2013 SPiiPlus Training Class Mathematical and Signal Processing Functions 1.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2013 SPiiPlus Training Class Multi-Axis Motion 1.
While Loop Lesson CS1313 Spring while Loop Outline 1.while Loop Outline 2.while Loop Example #1 3.while Loop Example #2 4.while Loop Example #3.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
Interfacing to the Analog World
PSSA Preparation.
Essential Cell Biology
Chapter 13: Digital Control Systems 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 13 Digital Control Systems.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
User Defined Functions Lesson 1 CS1313 Fall User Defined Functions 1 Outline 1.User Defined Functions 1 Outline 2.Standard Library Not Enough #1.
TCP/IP Protocol Suite 1 Chapter 18 Upon completion you will be able to: Remote Login: Telnet Understand how TELNET works Understand the role of NVT in.
State Variables.
SPiiPlus Training Class
Presentation transcript:

SPiiPlus Training Class Motion Profile Generation

What is Motion Profile Generation? Motion profile generation is the process by which the controller takes a high level command and creates a finely sampled motion profile At a minimum the controller will calculate a new position every update cycle Advanced controllers will also calculate velocity, acceleration, and jerk (acceleration/sec) High level command can be streamed by a host or executed directly by the motion controller Many different algorithms can be used to generate the motion profile / trajectory Motion profile / trajectory can be for a single or multi-axis move

Sampled Motion Trajectory Position Time

Motion Generation: SPiiPlus Master Formula ECAT Position (MPOS) Motion Generator Axis Position (APOS) CONNECT formula Reference Position (RPOS) Convert units to counts (EFAC) Convert counts to units (EFAC) Feedback Position (FPOS) User Commands / External Signals Feedback Drive Command MPU

Important ACSPL+ Motion Variables VEL: Commanded Velocity Motor commanded velocity in user units / second This is the maximum velocity of the motion profile ACC: Commanded Acceleration Motor commanded acceleration in user units / second2 This is the maximum acceleration of the motion profile DEC: Commanded Deceleration Motor commanded deceleration in user units / second2 This is the maximum deceleration of the motion profile JERK: Commanded Jerk Motor commanded jerk in user units / second3 This is the maximum jerk of the motion profile KDEC: Kill Deceleration Used for the KILL command only

Important ACSPL+ Motion Variables APOS: Axis Position Logical axis position in user-defined units Calculated directly from motion generator every MPU cycle Comes before the CONNECT function RPOS: Reference Position Motor commanded position in user-defined units Calculated via the CONNECT function every MPU cycle Sent to servo processor servo loop every MPU cycle Typically RPOS = APOS FPOS: Feedback Position Sensor feedback position in user-defined units Read from servo processor every MPU cycle PE: Position Error Difference between RPOS and FPOS Updated every MPU cycle

Important ACSPL+ Motion Variables EFAC: Encoder Factor Used to translate between encoder counts on the servo processor and user-defined units on the MPU EOFFS: Encoder Offset Offset between zero position on the servo processor and zero position on the MPU Updated whenever RPOS or FPOS is SET (homed). FPOS=𝐹𝑃∙EFAC+EOFFS 𝑅𝑃= RPOS−EOFFS EFAC Note: FP is feedback position stored in the Servo Processor RP is the reference position stored in the Servo Processor

Important ACSPL+ Motion Variables RVEL: Reference Velocity Motor commanded velocity in user units / second Calculated as the first difference of RPOS, with optional smoothing, every MPU cycle FVEL: Feedback Velocity Sensor feedback velocity in user units / second Calculated as first difference of FPOS, with optional smoothing, every MPU cycle Δ 𝑅 = RPOS 𝑛 − RPOS 𝑛−1 𝑇 RVEL 𝑛 = Δ 𝑅 ∙ 1− RVFIL 100 + RVEL 𝑛−1 ∙ RVFIL 100 Δ 𝐹 = FPOS 𝑛 − FPOS 𝑛−1 𝑇 FVEL 𝑛 = Δ 𝐹 ∙ 1− FVFIL 100 + FVEL 𝑛−1 ∙ FVFIL 100

Important ACSPL+ Motion Variables RACC: Reference Acceleration Motor commanded acceleration in user units / second2 Calculated as the first difference of RVEL every MPU cycle FACC: Feedback Acceleration Sensor feedback acceleration in user units / second2 Calculated as the first difference of FVEL every MPU cycle RACC 𝑛 = RVEL 𝑛 − RVEL 𝑛−1 𝑇 FACC 𝑛 = FVEL 𝑛 − FVEL 𝑛−1 𝑇

Important ACSPL+ Motion Variables GPHASE: Group Motion Phase Integer value for current motion phase 0: no motion 1: acceleration buildup 2: constant acceleration 3: acceleration finishing 4: constant velocity 5: deceleration buildup 6: constant deceleration 7: deceleration finishing GRTIME: Group Remaining Motion Time Estimated value of time (in milliseconds) until end of current motion

Important ACSPL+ Motion Variables MST: Motor State Bitwise encoded physical motor state information Bit 0: Enabled Bit 1: Open Loop Bit 5: In motion Bit 6: Accelerating AST: Axis State Bitwise encoded logical axis state information Bit 2: PEG is in progress Bit 3: Data collection is in progress

Move vs. Move and Settle Move time: time it takes for commanded motion to finish Move and settle time: time it takes for commanded motion to finish AND physical axis to settle within a specified window

Trajectory Algorithms

Step Profile: Basics Step Profile: Comments: Instantaneous change in position Infinite velocity Infinite acceleration Infinite jerk Comments: Not realistic Should never be used in real motion systems

Step Profile: Equations 𝒙 𝒕 = 𝟎 𝑿 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕 𝒗 𝒕 = 𝟎 ∞ 𝟎 𝒕< 𝒕 𝟎 𝒕= 𝒕 𝟎 𝒕 𝟎 <𝒕 𝒂 𝒕 = 𝟎 ±∞ 𝟎 𝒕< 𝒕 𝟎 𝒕= 𝒕 𝟎 𝒕 𝟎 <𝒕 𝒋 𝒕 = 𝟎 ±∞ 𝟎 𝒕< 𝒕 𝟎 𝒕= 𝒕 𝟎 𝒕 𝟎 <𝒕

Step Profile: ACSPL+ Example Should not be run on real systems!

1st Order Profile: Basics Linear position profile Instantaneous change in velocity Infinite acceleration Infinite jerk Comments: Not realistic Should never be used in real motion systems

1st Order Profile: Equations 𝒙 𝒕 = 𝟎 𝑽 ∙(𝒕− 𝒕 𝟎 ) 𝑿 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕< 𝒕 𝟏 𝒕 𝟏 ≤𝒕 𝒗 𝒕 = 𝟎 𝑽 𝟎 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕< 𝒕 𝟏 𝒕 𝟏 ≤𝒕 𝒂 𝒕 = 𝟎 ∞ 𝟎 −∞ 𝟎 𝒕< 𝒕 𝟎 𝒕= 𝒕 𝟎 𝒕 𝟎 <𝒕< 𝒕 𝟏 𝒕= 𝒕 𝟏 𝒕 𝟏 <𝒕 𝒋 𝒕 = 𝟎 ±∞ 𝟎 ±∞ 𝟎 𝒕< 𝒕 𝟎 𝒕= 𝒕 𝟎 𝒕 𝟎 <𝒕< 𝒕 𝟏 𝒕= 𝒕 𝟏 𝒕 𝟏 <𝒕

1st Order Profile: ACSPL+ Example Should not be run on real systems!

2nd Order Profile: Basics Quadratic position profile Linear velocity profile Instantaneous change in acceleration Infinite jerk Comments: Not realistic Simple controllers use this type of interpolation Results in ‘jerky’ behavior of motion systems

2nd Order Profile: Equations 𝑿 𝟏 = 𝟏 𝟐 ∙ 𝑨 ∙ 𝒕 𝟏 − 𝒕 𝟎 𝟐 𝑿 𝟐 = 𝑿 𝟏 + 𝑽 ∙( 𝒕 𝟐 − 𝒕 𝟏 ) 𝒙 𝒕 = 𝟎 𝟎.𝟓∙ 𝑨 ∙ (𝒕− 𝒕 𝟎 ) 𝟐 𝑿 𝟏 + 𝑽 ∙(𝒕− 𝒕 𝟏 ) 𝑿 𝟐 + 𝑽 ∙ 𝒕− 𝒕 𝟐 −𝟎.𝟓∙ 𝑨 ∙ (𝒕− 𝒕 𝟐 ) 𝟐 𝑿 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕< 𝒕 𝟏 𝒕 𝟏 ≤𝒕< 𝒕 𝟐 𝒕 𝟐 ≤𝒕< 𝒕 𝟑 𝒕 𝟑 ≤𝒕 𝒗 𝒕 = 𝟎 𝑨 ∙(𝒕− 𝒕 𝟎 ) 𝑽 𝑽 − 𝑨 ∙(𝒕− 𝒕 𝟐 ) 𝟎 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕< 𝒕 𝟏 𝒕 𝟏 ≤𝒕< 𝒕 𝟐 𝒕 𝟐 ≤𝒕< 𝒕 𝟑 𝒕 𝟑 ≤𝒕 𝒂 𝒕 = 𝟎 𝑨 𝟎 − 𝑨 𝟎 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕< 𝒕 𝟏 𝒕 𝟏 ≤𝒕< 𝒕 𝟐 𝒕 𝟐 ≤𝒕< 𝒕 𝟑 𝒕 𝟑 ≤𝒕 𝒋 𝒕 = 𝟎 ∞ 𝟎 −∞ 𝟎 −∞ 𝟎 ∞ 𝟎 𝒕< 𝒕 𝟎 𝒕= 𝒕 𝟎 𝒕 𝟎 <𝒕< 𝒕 𝟏 𝒕= 𝒕 𝟏 𝒕 𝟏 <𝒕< 𝒕 𝟐 𝒕= 𝒕 𝟐 𝒕 𝟐 <𝒕< 𝒕 𝟑 𝒕= 𝒕 𝟑 𝒕 𝟑 <𝒕

2nd Order Profile: ACSPL+ Example Not ideal for real systems

3rd Order Profile: Basics Cubic position profile Quadratic velocity profile Linear acceleration profile Instantaneous change in jerk Comments: Realistic Results in smooth motion Complex profile Requires appropriate jerk setting

3rd Order Profile: Equations 𝒙 𝒕 = 𝟎 𝟎.𝟏𝟔𝟔𝟕∙ 𝑱 ∙ (𝒕− 𝒕 𝟎 ) 𝟑 𝑿 𝟏 + 𝑽 𝟏 ∙ 𝒕− 𝒕 𝟏 +𝟎.𝟓∙ 𝑨 ∙ (𝒕− 𝒕 𝟏 ) 𝟐 𝑿 𝟐 + 𝑽 𝟐 ∙ 𝒕− 𝒕 𝟐 +𝟎.𝟓∙ 𝑨 ∙ 𝒕− 𝒕 𝟐 𝟐 −𝟎.𝟏𝟔𝟔𝟕∙ 𝑱 ∙ (𝒕− 𝒕 𝟐 ) 𝟑 𝑿 𝟑 + 𝑽 ∙ 𝒕− 𝒕 𝟑 𝑿 𝟒 + 𝑽 ∙ 𝒕− 𝒕 𝟒 −𝟎.𝟏𝟔𝟔𝟕∙ 𝑱 ∙ (𝒕− 𝒕 𝟒 ) 𝟑 𝑿 𝟓 + 𝑽 𝟑 ∙ 𝒕− 𝒕 𝟓 −𝟎.𝟓∙ 𝑨 ∙ (𝒕− 𝒕 𝟓 ) 𝟐 𝑿 𝟔 + 𝑽 𝟒 ∙ 𝒕− 𝒕 𝟔 −𝟎.𝟓∙ 𝑨 ∙ 𝒕− 𝒕 𝟔 𝟐 +𝟎.𝟏𝟔𝟔𝟕∙ 𝑱 ∙ (𝒕− 𝒕 𝟔 ) 𝟑 𝑿 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕≤ 𝒕 𝟏 𝒕 𝟏 ≤𝒕≤ 𝒕 𝟐 𝒕 𝟐 ≤𝒕≤ 𝒕 𝟑 𝒕 𝟑 ≤𝒕≤ 𝒕 𝟒 𝒕 𝟒 ≤𝒕≤ 𝒕 𝟓 𝒕 𝟓 ≤𝒕≤ 𝒕 𝟔 𝒕 𝟔 ≤𝒕≤ 𝒕 𝟕 𝒕> 𝒕 𝟕 𝒗 𝒕 = 𝟎 𝟎.𝟓∙ 𝑱 ∙ (𝒕− 𝒕 𝟎 ) 𝟐 𝑽 𝟏 + 𝑨 ∙ 𝒕− 𝒕 𝟏 𝑽 𝟐 + 𝑨 ∙ 𝒕− 𝒕 𝟐 −𝟎.𝟓∙ 𝑱 ∙ (𝒕− 𝒕 𝟐 ) 𝟐 𝑽 𝑽 −𝟎.𝟓∙ 𝑱 ∙ (𝒕− 𝒕 𝟒 ) 𝟐 𝑽 𝟑 − 𝑨 ∙ 𝒕− 𝒕 𝟓 𝑽 𝟒 − 𝑨 ∙ 𝒕− 𝒕 𝟔 +𝟎.𝟓∙ 𝑱 ∙ (𝒕− 𝒕 𝟔 ) 𝟐 𝟎 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕≤ 𝒕 𝟏 𝒕 𝟏 ≤𝒕≤ 𝒕 𝟐 𝒕 𝟐 ≤𝒕≤ 𝒕 𝟑 𝒕 𝟑 ≤𝒕≤ 𝒕 𝟒 𝒕 𝟒 ≤𝒕≤ 𝒕 𝟓 𝒕 𝟓 ≤𝒕≤ 𝒕 𝟔 𝒕 𝟔 ≤𝒕≤ 𝒕 𝟕 𝒕> 𝒕 𝟕

3rd Order Profile: Equations 𝒂 𝒕 = 𝟎 𝑱 ∙(𝒕− 𝒕 𝟎 ) 𝑨 𝑨 − 𝑱 ∙(𝒕− 𝒕 𝟐 ) 𝟎 − 𝑱 ∙(𝒕− 𝒕 𝟒 ) − 𝑨 − 𝑨 + 𝑱 ∙(𝒕− 𝒕 𝟔 ) 𝟎 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕≤ 𝒕 𝟏 𝒕 𝟏 ≤𝒕≤ 𝒕 𝟐 𝒕 𝟐 ≤𝒕≤ 𝒕 𝟑 𝒕 𝟑 ≤𝒕≤ 𝒕 𝟒 𝒕 𝟒 ≤𝒕≤ 𝒕 𝟓 𝒕 𝟓 ≤𝒕≤ 𝒕 𝟔 𝒕 𝟔 ≤𝒕≤ 𝒕 𝟕 𝒕> 𝒕 𝟕 𝒋 𝒕 = 𝟎 𝑱 𝟎 − 𝑱 𝟎 − 𝑱 𝟎 𝑱 𝟎 𝒕< 𝒕 𝟎 𝒕 𝟎 ≤𝒕≤ 𝒕 𝟏 𝒕 𝟏 ≤𝒕≤ 𝒕 𝟐 𝒕 𝟐 ≤𝒕≤ 𝒕 𝟑 𝒕 𝟑 ≤𝒕≤ 𝒕 𝟒 𝒕 𝟒 ≤𝒕≤ 𝒕 𝟓 𝒕 𝟓 ≤𝒕≤ 𝒕 𝟔 𝒕 𝟔 ≤𝒕≤ 𝒕 𝟕 𝒕> 𝒕 𝟕

3rd Order Profile: ACSPL+ Example

Jogging: Basics Jogging: Accelerating to constant velocity No defined end-point Can be done with 1st order, 2nd order or 3rd order profiles

Jogging: ACSPL+ Example

CAM Motion: Basics CAM Motion: Multi-axis motion along a continuous path 2 or 3 dimensional space Can involved more than 3 axes Common in CAD/CAM applications where motion profile is a tool path created from a CAD file Typically composed of arc and line segments

CAM Motion: Equations Line Segment: Arc Segment: Constant linear velocity along an n-dimensional path Requires knowledge of start point, end point, and velocity 𝒙 = 𝒗 ∙𝒕 Arc Segment: Constant angular velocity along circumference of a circle Confined to 2D plane Requires knowledge of start point, center point or end point (or equivalent) 𝒙=𝒓∙ 𝐜𝐨𝐬 𝝎∙𝒕+𝝋 𝒚=𝒓∙ 𝐬𝐢𝐧 𝝎∙𝒕+𝝋

CAM Motion: ACSPL+ Example

Master / Slave: Basics Master / Slave Motion: Axis is slaved to a master signal Master signal could be an encoder, virtual axis, analog input, etc Slave is moved to track the masters position (position lock) or velocity (velocity lock) as best as possible without exceeding its maximum velocity or acceleration There will always be a delay between the master and slave Common in applications where the master signal has unknown dynamics or controlled externally

Master / Slave: ACSPL+ Example

Spline: Basics Spline: Catmull-Rom: B-Spline: Smooth piece-wise polynomial function Used for interpolating in between data points to any degree of interpolation Different types of splines have different properties Catmull-Rom: Guarantees motion through control points Guarantees continuous position and velocity profiles (does not guarantee continuous acceleration profile) B-Spline: Does not guarantee motion through control points Guarantees continuous position, velocity and acceleration profiles

Spline: PVT Motion PVT Motion: User provides position, velocity, and time points Motion generator interpolates between time points to determine position at each controller cycle Acceleration is implicitly defined by the PVT points

Spline: ACSPL+ Example

Kinematics: Basics Kinematics: Forward Kinematics: Inverse Kinematics: Relationship between actuators positions and end-effector positions Common with multi-axis applications where end-effector motion is dependent on multiple actuators Forward Kinematics: Determining end-effector position as a function of actuator positions Inverse Kinematics: Determining actuator positions as a function of end-effector position

Kinematics: Inverse Kinematics Example For the flexible gantry table below, determine the actuator positions as a function of the end-effector X-q position. 𝑋 1 =𝑋+ 𝐿∙ tan 𝜃 2 𝑋 2 =𝑋− 𝐿∙ tan 𝜃 2

Kinematics: ACSPL+ Example

ACSPL+ Programming Example: 1 Load program “Programming 06 – SetMotionParams.prg” to the controller Should populate buffer 19 Open communication terminal and set it up to show DISP messages From the communication terminal start buffer 19 at label ‘Begin’ (“START 19, BEGIN”). Follow the instructions on the screen What happens?

ACSPL+ Programming Example: 2 An application requires an axis to have two modes: slow and fast. The customer wants to use a digital input (IN(0).0) to toggle between the two modes (if ‘0’, set for slow mode, if ‘1’, set for fast mode). They will use a second digital input (IN(0).1) to toggle motion. Use buffer 20 to write the program. Once running program should not stop (hint: WHILE 1 loop). Anytime IN(0).0 is toggled the motion parameters should switch between a slow and fast mode (determine your own slow and fast parameters) Anytime IN(0).1 goes from low to high a new motion should be started. Use the motion command “PTP/r (axis), distance” for the motion. Run the program and test.