Introduction to Scientific Computing II Institut für Informatik Scientific Computing In Computer Science Introduction to Scientific Computing II Gaussian Elimination Dr. Miriam Mehl
Typical SLE sparse band structure
Example
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination (LU)
Gaussian Elimination – Costs
Gaussian Elimination – Costs O(1/h)2
Gaussian Elimination – Costs O(1/h)2*(1/h)2
Gaussian Elimination – Costs O(1/h)2*(1/h)2 + O(1/h)
Gaussian Elimination – Costs O(1/h)2*(1/h)2 + O(1/h)*(1/h)2
Gaussian Elimination – Costs O(1/h)2*(1/h)2 + O(1/h)*(1/h)2 + O(1/h)
Gaussian Elimination – Costs O(1/h)*(1/h)2 + O(1/h)*(1/h)2 + O(1/h)*(1/h)2
Gaussian Elimination – Costs 2D: O(1/h)4 3D: O(1/h)7
Gaussian Elimination – Costs 2D h runtime (33 TFlop/s) 2-7 0.03 sec 2-8 0.5 sec 2-9 8.3 sec 2-10 2 min 23 sec 2-11 35 min 32 sec 2-12 9 h 28 min 38 sec 2-13 6 d 7 h 28 min 10 sec hallo
Gaussian Elimination – Costs 3D hallo h runtime (33 TFlop/s) 2-6 8 min 53 sec 2-7 18 h 57 min 26 sec 2-8 100 d 26 h 10 min 53 sec 2-9 35 a 156 d 57 h 53 min 04 sec
hallo
Relaxation Methods – Gauss-Seidel
Relaxation Methods – Jacobi