Introduction to Scientific Computing II

Slides:



Advertisements
Similar presentations
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Advertisements

CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Linear System Remark: Remark: Remark: Example: Solve:
CSCI-455/552 Introduction to High Performance Computing Lecture 25.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Special Matrices and Gauss-Siedel
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 20 Solution of Linear System of Equations - Iterative Methods.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
computer
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
Introduction to Scientific Computing II Overview Michael Bader.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Linear System expensive p=[0,0.2,0.4,0.45,0.5,0.55,0.6,0.8,1]; t=[1:8; 2:9]; e=[1,9]; n = length(p); % number of nodes m = size(t,2); % number of elements.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
Iterative Solution Methods
Scientific Computing Lab
Solving Systems of Linear Equations: Iterative Methods
Numerical Analysis Lecture12.
Scientific Computing Lab
Iterative Methods Good for sparse matrices Jacobi Iteration
Elements in Eliminated Jacobian = 133,515
Elements in Eliminated Jacobian = 133,515
Introduction to Scientific Computing II
Pressure Poisson Equation
RECORD. RECORD Gaussian Elimination: derived system back-substitution.
Scientific Computing Lab
Matrix Methods Summary
Introduction to Scientific Computing II
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
Introduction to Scientific Computing II
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Numerical Computation and Optimization
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Numerical Analysis Lecture13.
II //II // \ Others Q.
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
Scientific Computing Lab
Numerical Linear Algebra
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Introduction: Asymptotic Notation
Separating Interface from Implementation
Numerical Analysis Lecture11.
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
Home assignment #3 (1) (Total 3 problems) Due: 12 November 2018
Ax = b Methods for Solution of the System of Equations:
Introduction to Scientific Computing II
Presentation transcript:

Introduction to Scientific Computing II Institut für Informatik Scientific Computing In Computer Science Introduction to Scientific Computing II Gaussian Elimination Dr. Miriam Mehl

Typical SLE sparse band structure

Example

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination (LU)

Gaussian Elimination – Costs

Gaussian Elimination – Costs O(1/h)2

Gaussian Elimination – Costs O(1/h)2*(1/h)2

Gaussian Elimination – Costs O(1/h)2*(1/h)2 + O(1/h)

Gaussian Elimination – Costs O(1/h)2*(1/h)2 + O(1/h)*(1/h)2

Gaussian Elimination – Costs O(1/h)2*(1/h)2 + O(1/h)*(1/h)2 + O(1/h)

Gaussian Elimination – Costs O(1/h)*(1/h)2 + O(1/h)*(1/h)2 + O(1/h)*(1/h)2

Gaussian Elimination – Costs 2D: O(1/h)4 3D: O(1/h)7

Gaussian Elimination – Costs 2D h runtime (33 TFlop/s) 2-7 0.03 sec 2-8 0.5 sec 2-9 8.3 sec 2-10 2 min 23 sec 2-11 35 min 32 sec 2-12 9 h 28 min 38 sec 2-13 6 d 7 h 28 min 10 sec hallo

Gaussian Elimination – Costs 3D hallo h runtime (33 TFlop/s) 2-6 8 min 53 sec 2-7 18 h 57 min 26 sec 2-8 100 d 26 h 10 min 53 sec 2-9 35 a 156 d 57 h 53 min 04 sec

hallo

Relaxation Methods – Gauss-Seidel

Relaxation Methods – Jacobi