A Closer Look at the Underlying Event in Run 2 at CDF

Slides:



Advertisements
Similar presentations
Niccolo’ Moggi XII DIS April The “Underlying Event” at CDF Niccolo’ Moggi Universita’ and I.N.F.N, Bologna for the CDF Collaboration April 15,
Advertisements

IMFP Day 4 April 6, 2006 Rick Field – Florida/CDF/CMSPage 1 XXXIV International Meeting on Fundamental Physics Rick Field University of Florida (for.
November 1999Rick Field - Run 2 Workshop1 We are working on this! “Min-Bias” Physics: Jet Evolution & Event Shapes  Study the CDF “min-bias” data with.
HEP Seminar - Baylor Waco, January 21, 2014 Rick Field – Florida/CDF/CMSPage 1 Outline of Talk CMS at the LHC CDF Run GeV, 900 GeV, 1.96 TeV 900.
CDF Joint Physics Group June 27, 2003 Rick FieldPage 1 PYTHIA Tune A versus Run 2 Data  Compare PYTHIA Tune A with Run 2 data on the “underlying event”.
2012 Tel Aviv, October 15, 2012 Rick Field – Florida/CDF/CMSPage 1 Rick Field University of Florida Outline of Talk CMS at the LHC CDF Run 2 
IPPP Seminar Durham, September 8, 2015 Rick Field – Florida/CDF/CMSPage 1 Outline of Talk CMS at the LHC CDF “Tevatron Energy Scan” 300 GeV, 900 GeV, 1.96.
Run 2 Monte-Carlo Workshop April 20, 2001 Rick Field - Florida/CDFPage 1 The Underlying Event in Hard Scattering Processes  The underlying event in a.
Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDFPage 1 The “Underlying Event” in Run 2 at CDF  Study the “underlying event” as defined by.
2015 London, September 1, 2015 Rick Field – Florida/CDF/CMSPage 1 Outline of Talk CMS at the LHC CDF “Tevatron Energy Scan” 300 GeV, 900 GeV, 1.96.
C2CR07-Lake Tahoe February 28, 2007 Rick Field – Florida/CDFPage 1 C2CR07 Rick Field University of Florida (for the CDF Collaboration) CDF Run 2 Min-Bias.
LPC CMS Workshop June 8, 2007 Rick Field – Florida/CMSPage 1 LPC Mini-Workshop on Early CMS Physics Rick Field University of Florida (for the.
Perugia, Italy October 27, 2008 Rick Field – Florida/CDF/CMSPage 1 Studying the Underlying Event at CDF and the LHC Rick Field University of.
Fermilab Energy Scaling Workshop April 28, 2009 Rick Field – Florida/CDF/CMSPage 1 1 st Workshop on Energy Scaling in Hadron-Hadron Collisions Rick Field.
CDF Paper Seminar Fermilab - March 11, 2010 Rick Field – Florida/CDF/CMSPage 1 Sorry to be so slow!! Studying the “Underlying Event” at CDF CDF Run 2 “Leading.
2010 Glasgow, November 30, 2010 Rick Field – Florida/CDF/CMSPage Rick Field University of Florida Outline of Talk  Discuss the.
ICHEP 2012 Melbourne, July 5, 2012 Rick Field – Florida/CDF/CMSPage 1 ICHEP 2012 Rick Field University of Florida Outline of Talk CMS at the LHC CDF Run.
ISMD2004 July 27, 2004 Rick Field - Florida/CDFPage 1 International Symposium on Multiparticle Dynamics Rick Field (theorist?) “Jet Formation in QCD”
Cambridge Workshop July 20, 2002 Rick Field - Florida/CDFPage 1 The “Underlying Event” in Hard Scattering Processes  What happens when a proton and an.
Energy Dependence of the UE
YETI’11: The Standard Model at the Energy Frontier
The LHC Physics Environment
The “Underlying Event” CDF-LHC Comparisons
Decomposing p+p Events at √s = 200 GeV with STAR
“softQCD” and Correlations Rick Field & Nick Van Remortel
Physics and Techniques of Event Generators
Rick Field – Florida/CDF/CMS
Lake Louise Winter Institute
MB&UE Working Group Meeting UE Lessons Learned & What’s Next
University of Chicago Lecture 3: Tuning the Models
PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field
The “Underlying Event” in Run 2 (CDF)
MB&UE Working Group Meeting CMS UE Data and the New Tune Z1
Predicting MB & UE at the LHC
Predicting “Min-Bias” and the “Underlying Event” at the LHC
Energy Dependence of the “Underlying Event” Craig Group & David Wilson
Modeling Min-Bias and Pile-Up University of Oregon February 24, 2009
Predicting “Min-Bias” and the “Underlying Event” at the LHC
Early Physics Measurements University of Florida October 2009
Predicting “Min-Bias” and the “Underlying Event” at the LHC
“Min-Bias” and the “Underlying Event” at CDF
Monte-Carlo Generators for CMS
Min-Bias and the Underlying Event in Run 2
Rick Field – Florida/CDF/CMS
The Tevatron Connection
XXXV International Symposium on Multiparticle Dynamics 2005
“Min-Bias” and the “Underlying Event” in Run 2 at CDF and the LHC
Monte Carlos for the LHC
XXXIV International Meeting on Fundamental Physics
The Next Stretch of the Higgs Magnificent Mile
The LHC Physics Environment
The “Underlying Event” in Run 2 at CDF
RHIC & AGS Annual Users’ Meeting
International Symposium on Multiparticle Dynamics
“Min-Bias” & “Underlying Event” at the Tevatron and the LHC
Multiple Parton Interactions and the Underlying Event
The “Underlying Event” CDF-LHC Comparisons
Rick Field – Florida/CDF/CMS
Toward an Understanding of Hadron-Hadron Collisions
QCD Monte-Carlo Generators in Run 2 at CDF
“Min-Bias” and the “Underlying Event”
The Underlying Event in Hard Scattering Processes
Review of the QCD Monte-Carlo Tunes
Perspectives on Physics and on CMS at Very High Luminosity
PYTHIA 6.2 “Tunes” for Run II
Rick Field - Florida/CDF
The “Underlying Event” at CDF and CMS
Workshop on Early Physics Opportunities at the LHC
The Underlying Event in Hard Scattering Processes
Rick Field – Florida/CDF/CMS
Presentation transcript:

A Closer Look at the Underlying Event in Run 2 at CDF The “underlying event” consists of hard initial & final-state radiation plus the “beam-beam remnants” and possible multiple parton interactions. Much more new Run 2 results than I can show here! I will make the plots available in the CDF “blessed plots” area soon! CERN MC4LHC Workshop July 2003 During the workshop the theorists, ATLAS/CMS experimenters, and I constructed a “wish list” of data from CDF relating to “min-bias” and the “underlying event” and I promised to do the analysis and have the data available by the time of the Santa Barbara workshop in February 2004. New CDF Run 2 results! Two Classes of Events: “Leading Jet” and “Back-to-Back”. Two “Transverse” regions: “transMAX”, “transMIN”, “transDIF”. PTmax and PTmaxT distributions and averages. Df Distributions: “Density” and “Associated Density”. <pT> versus charged multiplicity: “min-bias” and the “transverse” region. Correlations between the two “transverse” regions: “trans1” vs “trans2”. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

The “Transverse” Regions as defined by the Leading Jet Charged Particle Df Correlations pT > 0.5 GeV/c |h| < 1 Look at the charged particle density in the “transverse” region! “Transverse” region is very sensitive to the “underlying event”! Look at charged particle correlations in the azimuthal angle Df relative to the leading calorimeter jet (JetClu R = 0.7, |h| < 2). Define |Df| < 60o as “Toward”, 60o < -Df < 120o and 60o < Df < 120o as “Transverse 1” and “Transverse 2”, and |Df| > 120o as “Away”. Each of the two “transverse” regions have area DhDf = 2x60o = 4p/6. The overall “transverse” region is the sum of the two transverse regions (DhDf = 2x120o = 4p/3). KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Particle Densities Charged Particles pT > 0.5 GeV/c |h| < 1 DhDf = 4p = 12.6 CDF Run 2 “Min-Bias” CDF Run 2 “Min-Bias” Observable Average Average Density per unit h-f Nchg Number of Charged Particles (pT > 0.5 GeV/c, |h| < 1) 3.17 +/- 0.31 0.252 +/- 0.025 PTsum (GeV/c) Scalar pT sum of Charged Particles 2.97 +/- 0.23 0.236 +/- 0.018 1 charged particle dNchg/dhdf = 1/4p = 0.08 dNchg/dhdf = 3/4p = 0.24 3 charged particles 1 GeV/c PTsum dPTsum/dhdf = 1/4p GeV/c = 0.08 GeV/c dPTsum/dhdf = 3/4p GeV/c = 0.24 GeV/c 3 GeV/c PTsum Divide by 4p Study the charged particles (pT > 0.5 GeV/c, |h| < 1) and form the charged particle density, dNchg/dhdf, and the charged scalar pT sum density, dPTsum/dhdf. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse” Particle Densities Charged Particles pT > 0.5 GeV/c |h| < 1 Area = 4p/6 AVE “transverse” (Trans 1 + Trans 2)/2 1 charged particle in the “transverse 2” region dNchg/dhdf = 1/(4p/6) = 0.48 Study the charged particles (pT > 0.5 GeV/c, |h| < 1) in the “Transverse 1” and “Transverse 2” and form the charged particle density, dNchg/dhdf, and the charged scalar pT sum density, dPTsum/dhdf. The average “transverse” density is the average of “transverse 1” and “transverse 2”. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Charged Particle Density Df Dependence Log Scale! Leading Jet Min-Bias 0.25 per unit h-f Shows the Df dependence of the charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 relative to jet#1 (rotated to 270o) for “leading jet” events 30 < ET(jet#1) < 70 GeV. Also shows charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 for “min-bias” collisions. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Charged Particle Density Df Dependence Refer to this as a “Leading Jet” event Subset Refer to this as a “Back-to-Back” event Look at the “transverse” region as defined by the leading jet (JetClu R = 0.7, |h| < 2) or by the leading two jets (JetClu R = 0.7, |h| < 2). “Back-to-Back” events are selected to have at least two jets with Jet#1 and Jet#2 nearly “back-to-back” (Df12 > 150o) with almost equal transverse energies (ET(jet#2)/ET(jet#1) > 0.8). Shows the Df dependence of the charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 relative to jet#1 (rotated to 270o) for 30 < ET(jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Charged Particle Density Df Dependence “Leading Jet” “Back-to-Back” 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 relative to jet#1 (rotated to 270o) for 30 < ET(jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse” PTsum Density versus ET(jet#1) “Leading Jet” “Back-to-Back” Min-Bias 0.24 GeV/c per unit h-f Shows the average charged PTsum density, dPTsum/dhdf, in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse” PTsum Density versus ET(jet#1) 30-70 GeV 95-130 GeV Very little dependence on ET(jet#1) in the “transverse” region for “back-to-back” events! KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“TransDIF” PTsum Density versus ET(jet#1) “Leading Jet” “Back-to-Back” “MAX-MIN” is very sensitive to the “hard scattering” component of the “underlying event”! Use the leading jet to define the MAX and MIN “transverse” regions on an event-by-event basis with MAX (MIN) having the largest (smallest) charged PTsum density. Shows the “transDIF” = MAX-MIN charge PTsum density, dPTsum/dhdf, for pT > 0.5 GeV/c, |h| < 1 versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“TransMIN” PTsum Density versus ET(jet#1) “Leading Jet” “Back-to-Back” “transMIN” is very sensitive to the “beam-beam remnant” component of the “underlying event”! Use the leading jet to define the MAX and MIN “transverse” regions on an event-by-event basis with MAX (MIN) having the largest (smallest) charged particle density. Shows the “transMIN” charge particle density, dNchg/dhdf, for pT > 0.5 GeV/c, |h| < 1 versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse” PTsum Density PYTHIA Tune A vs HERWIG “Leading Jet” “Back-to-Back” Now look in detail at “back-to-back” events in the region 30 < ET(jet#1) < 70 GeV! Shows the average charged PTsum density, dPTsum/dhdf, in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Charged PTsum Density PYTHIA Tune A vs HERWIG HERWIG (without multiple parton interactions) does not produces enough PTsum in the “transverse” region for 30 < ET(jet#1) < 70 GeV! KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Charged PTsum Density PYTHIA Tune A vs HERWIG dPT/dhdf + 0.2 GeV/c 308 MeV in R = 0.7 cone! Add 0.2 GeV/c per unit h-f to HERWIG scalar PTsum density, dPTsum/dhdf. This corresponds to 0.2 x 4p = 2.5 GeV/c in the entire range pT > 0.5 GeV/c, |h| < 1. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse” <pT> versus “Transverse” Nchg “Leading Jet” “Back-to-Back” Min-Bias Look at the <pT> of particles in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus the number of particles in the “transverse” region: <pT> vs Nchg. Shows <pT> versus Nchg in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) for “Leading Jet” and “Back-to-Back” events with 30 < ET(jet#1) < 70 GeV compared with “min-bias” collisions. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse” PTmax versus ET(jet#1) “Leading Jet” Highest pT particle in the “transverse” region! “Back-to-Back” Min-Bias Use the leading jet to define the “transverse” region and look at the maximum pT charged particle in the “transverse” region, PTmaxT. Shows the average PTmaxT, in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events compared with the average maximum pT particle, PTmax, in “min-bias” collisions (pT > 0.5 GeV/c, |h| < 1). KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Min-Bias “Associated” Charged Particle Density Highest pT charged particle! “Associated” densities do not include PTmax! Use the maximum pT charged particle in the event, PTmax, to define a direction and look at the the “associated” density, dNchg/dhdf, in “min-bias” collisions (pT > 0.5 GeV/c, |h| < 1). It is more probable to find a particle accompanying PTmax than it is to find a particle in the central region! Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events. Also shown is the average charged particle density, dNchg/dhdf, for “min-bias” events. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Min-Bias “Associated” Charged Particle Density Rapid rise in the particle density in the “transverse” region as PTmax increases! PTmax > 2.0 GeV/c Transverse Region Transverse Region Ave Min-Bias 0.25 per unit h-f PTmax > 0.5 GeV/c Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events with PTmax > 0.5, 1.0, and 2.0 GeV/c. Shows “jet structure” in “min-bias” collisions (i.e. the “birth” of the leading two jets!). KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged Particle Densities Maximum pT particle in the “transverse” region! “Associated” densities do not include PTmaxT! Use the leading jet in “back-to-back” events to define the “transverse” region and look at the maximum pT charged particle in the “transverse” region, PTmaxT. Look at the Df dependence of the “associated” charged particle and PTsum densities, dNchg/dhdf and dPTsum/dhdf for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmaxT) relative to PTmaxT. Rotate so that PTmaxT is at the center of the plot (i.e. 180o). KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged Particle Density “Associated” densities do not include PTmaxT! Jet#2 Region ?? Log Scale! Look at the Df dependence of the “associated” charged particle density, dNchg/dhdf for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 0.5 GeV/c, PTmaxT > 1.0 GeV/c and PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < ET(jet#1) < 70 GeV . Shows “jet structure” in the “transverse” region (i.e. the “birth” of the 3rd & 4th jet). KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged Particle Densities charge density “Back-to-Back” “associated” density Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 0.5 GeV/c, PTmaxT > 1.0 GeV/c and PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < ET(jet#1) < 70 GeV. It is more probable to find a particle accompanying PTmaxT than it is to find a particle in the “transverse” region! Shows Df dependence of the charged particle density, dNchg/dhdf for charged particles (pT > 0.5 GeV/c, |h| < 1) relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged Particle Densities charge density “Back-to-Back” “associated” density 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged Particle Densities charge density “Back-to-Back” “associated” density 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, PTmaxT > 2.0 GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Rick Field - Florida/CDF Jet Topologies QCD Four Jet Topology QCD Three Jet Topology 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, PTmaxT > 2.0 GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged Particle Density Jet#2 Region Log Scale! Look at the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 2.0 GeV/c for “back-to-back” events with 30 < ET(jet#1) < 70 GeV and 95 < ET(jet#1) < 130 GeV. Very little dependence on ET(jet#1) in the “transverse” region for “back-to-back” events! KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Back-to-Back “Associated” Charged PTsum Density Jet#2 Region Log Scale! Look at the Df dependence of the “associated” charged PTsum density, dPTsum/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 2.0 GeV/c for “back-to-back” events with 30 < ET(jet#1) < 70 GeV and 95 < ET(jet#1) < 130 GeV. Very little dependence on ET(jet#1) in the “transverse” region for “back-to-back” events! KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Back-to-Back” vs “Min-Bias” “Associated” Charge Density “Birth” of jet#3 in the “transverse” region! “Back-to-Back” “Associated” Density “Min-Bias” “Associated” Density Log Scale! “Birth” of jet#1 in “min-bias” collisions! Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf for pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < ET(jet#1) < 70 GeV. Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events with PTmax > 2.0 GeV/c. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Back-to-Back” vs “Min-Bias” “Associated” PTsum Density “Birth” of jet#3 in the “transverse” region! “Back-to-Back” “Associated” Density “Min-Bias” “Associated” Density Log Scale! “Birth” of jet#1 in “min-bias” collisions! Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf for pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < ET(jet#1) < 70 GeV. Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events with PTmax > 2.0 GeV/c. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Associated” PTsum Density PYTHIA Tune A vs HERWIG HERWIG (without multiple parton interactions) does not produce enough “associated” PTsum in the direction of PTmaxT! PTmaxT > 0.5 GeV/c And HERWIG (without multiple parton interactions) does not produce enough PTsum in the direction opposite of PTmaxT! KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Associated” PTsum Density PYTHIA Tune A vs HERWIG For PTmaxT > 2.0 GeV both PYTHIA and HERWIG produce slightly too much “associated” PTsum in the direction of PTmaxT! PTmaxT > 2 GeV/c But HERWIG (without multiple parton interactions) produces too few particles in the direction opposite of PTmaxT! KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse 1” Region vs “Transverse 2” Region “Leading Jet” “Back-to-Back” Use the leading jet to define two “transverse” regions and look at the correlations between “transverse 1” and “transverse 2”. Shows the average number of charged particles in the “transverse 2” region versus the number of charged particles in the “transverse 1” region for pT > 0.5 GeV/c and |h| < 1 for “Leading Jet” and “Back-to-Back” events. Shows the average pT of charged particles in the “transverse 2” region versus the number of charged particles in the “transverse 1” region for pT > 0.5 GeV/c and |h| < 1 for “Leading Jet” and “Back-to-Back” events. KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

“Transverse 1” Region vs “Transverse 2” Region KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Question: Is this a probe of multiple parton interactions? Summary “Leading Jet” “Back-to-Back” There are some interesting correlations between the “transverse 1” and “transverse 2” regions both for “Leading-Jet” and “Back-to-Back” events! PYTHIA Tune A (with multiple parton scattering) does a much better job in describing these correlations than does HERWIG (without multiple parton scattering). Question: Is this a probe of multiple parton interactions? KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Rick Field - Florida/CDF Summary “Leading Jet” “Back-to-Back” “Back-to-Back” events have less “hard scattering” (initial and final state radiation) component in the “transverse” region which allows for a closer look at the “beam-beam remnant” and multiple parton scattering component of the “underlying” event. PYTHIA Tune A (with multiple parton scattering) does a much better job in describing the “back-to-back” events than does HERWIG (without multiple parton scattering). KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF

Summary Next Step Look at the jet topologies (2 jet vs 3 jet vs 4 jet etc). See if there is an excess of 4 jet events due to multiple parton interactions! Max pT in the “transverse” region! “Associated” densities do not include PTmaxT! The “associated” densities show strong correlations (i.e. jet structure) in the “transverse” region both for “Leading Jet” and “Back-to-Back” events. The “birth” of the 1st jet in “min-bias” collisions looks very similar to the “birth” of the 3rd jet in the “transverse” region of hard scattering “Back-to-Back” events. Question: Is the topology 3 jet or 4 jet? KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF