Hydrogen Sulfide Demonstrates Promising Antitumor Efficacy in Gastric Carcinoma by Targeting MGAT5  Rui Wang, Qilin Fan, Junjie Zhang, Xunan Zhang, Yuqi.

Slides:



Advertisements
Similar presentations
Continuous Delivery of Neutralizing Antibodies Elevate CCL2 Levels in Mice Bearing MCF10CA1d Breast Tumor Xenografts  Min Yao, Curtis Smart, Qingting.
Advertisements

Molecular Therapy - Nucleic Acids
Volume 114, Issue 5, Pages (May 1998)
A Novel Cinnamide YLT26 Induces Breast Cancer Cells Apoptosis via ROS-Mitochondrial Apoptotic Pathway in Vitro and Inhibits.
Aldehyde Dehydrogenase 1A1 Possesses Stem-Like Properties and Predicts Lung Cancer Patient Outcome  Xiao Li, MD, Liyan Wan, MD, Jian Geng, MD, Chin-Lee.
Figure 1. Herbacetin binds to AKT1/2 and suppresses each respective kinase activity. The effect of herbacetin on (A) PI3K/AKT and (B) MAPK signaling pathway.
Molecular Therapy - Oncolytics
Figure 1. Herbacetin binds to AKT1/2 and suppresses each respective kinase activity. The effect of herbacetin on (A) PI3K/AKT and (B) MAPK signaling pathway.
Volume 144, Issue 3, Pages e4 (March 2013)
Volume 145, Issue 2, Pages (August 2013)
Integrin αvβ6 Promotes Lung Cancer Proliferation and Metastasis through Upregulation of IL-8–Mediated MAPK/ERK Signaling  Pengwei Yan, Huanfeng Zhu, Li.
The Chemokine Receptor CXCR4 and c-MET Cooperatively Promote Epithelial- Mesenchymal Transition in Gastric Cancer Cells  Yu Cheng, Yongxi Song, Jinglei.
Deregulation of SLIT2-Mediated Cdc42 Activity Is Associated with Esophageal Cancer Metastasis and Poor Prognosis  Ruo-Chia Tseng, PhD, Jia-Ming Chang,
Sp1 Suppresses miR-3178 to Promote the Metastasis Invasion Cascade via Upregulation of TRIOBP  Hui Wang, Kai Li, Yu Mei, Xuemei Huang, Zhenglin Li, Qingzhu.
A Requirement for ZAK Kinase Activity in Canonical TGF-β Signaling
Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT  Zhen-Yu He, San-Gang Wu, Fang Peng,
Droxinostat, a Histone Deacetylase Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cell Lines via Activation of the Mitochondrial Pathway and.
IFN-γ Induces Gastric Cancer Cell Proliferation and Metastasis Through Upregulation of Integrin β3-Mediated NF-κB Signaling  Yuan-Hua Xu, Zheng-Li Li,
Concurrent Treatment with Anti-DLL4 Enhances Antitumor and Proapoptotic Efficacy of a γ-Secretase Inhibitor in Gastric Cancer  Muxing Kang, Yaoyi Zhang,
MicroRNA-489 Plays an Anti-Metastatic Role in Human Hepatocellular Carcinoma by Targeting Matrix Metalloproteinase-7  Yixiong Lin, Jianjun Liu, Yuqi Huang,
Volume 144, Issue 2, Pages (February 2013)
PTF1α/p48 and cell proliferation
A Requirement for ZAK Kinase Activity in Canonical TGF-β Signaling
Silencing of Discoidin Domain Receptor-1 (DDR1) Concurrently Inhibits Multiple Steps of Metastasis Cascade in Gastric Cancer  Ryo Yuge, Yasuhiko Kitadai,
Aldehyde Dehydrogenase 1A1 Possesses Stem-Like Properties and Predicts Lung Cancer Patient Outcome  Xiao Li, MD, Liyan Wan, MD, Jian Geng, MD, Chin-Lee.
Molecular Therapy - Nucleic Acids
Antisense Oligonucleotides Targeting Y-Box Binding Protein-1 Inhibit Tumor Angiogenesis by Downregulating Bcl-xL-VEGFR2/-Tie Axes  Kiyoko Setoguchi, Lin.
Volume 19, Issue 12, Pages (December 2017)
Volume 131, Issue 5, Pages (November 2006)
Laminin γ2 Mediates Wnt5a-Induced Invasion of Gastric Cancer Cells
A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells  Funan Liu, Zhenguo Cheng, Xiaodong Li, Yanshu.
The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells
Volume 131, Issue 5, Pages (November 2006)
Volume 20, Issue 2, Pages (February 2018)
Volume 138, Issue 5, Pages e2 (May 2010)
Uc.454 Inhibited Growth by Targeting Heat Shock Protein Family A Member 12B in Non- Small-Cell Lung Cancer  Jun Zhou, Chenghai Wang, Weijuan Gong, Yandan.
Volume 152, Issue 1, Pages (January 2019)
Inhibiting MDM2-p53 Interaction Suppresses Tumor Growth in Patient-Derived Non– Small Cell Lung Cancer Xenograft Models  Josephine Hai, PhD, Shingo Sakashita,
Molecular Therapy - Nucleic Acids
Volume 145, Issue 2, Pages (August 2013)
Volume 25, Issue 9, Pages (September 2017)
Molecular Therapy - Nucleic Acids
Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells  Yangling Li, Miao Xian, Bo Yang, Meidan.
Brian Poligone, Elaine S. Gilmore, Carolina V
Volume 15, Issue 4, Pages (April 2016)
Volume 21, Issue 5, Pages (May 2013)
MiR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling  Hua Jin, Song Luo, Yun Wang, Chang Liu, Zhenghao.
Molecular Therapy - Nucleic Acids
Molecular Therapy - Nucleic Acids
Keratinocyte growth factor promotes goblet cell differentiation through regulation of goblet cell silencer inhibitor  Dai Iwakiri, Daniel K. Podolsky 
Molecular Therapy - Nucleic Acids
Volume 19, Issue 8, Pages (August 2011)
Volume 50, Issue 2, Pages (April 2013)
Figure 1. RSPO3 expression is upregulated in bladder cancer
Green Tea Polyphenol Epigallocatechin-3-Gallate Suppresses Collagen Production and Proliferation in Keloid Fibroblasts via Inhibition of the STAT3-Signaling.
Volume 25, Issue 4, Pages (April 2017)
Shrimp miR-34 from Shrimp Stress Response to Virus Infection Suppresses Tumorigenesis of Breast Cancer  Yalei Cui, Xiaoyuan Yang, Xiaobo Zhang  Molecular.
LncRNA TRERNA1 Function as an Enhancer of SNAI1 Promotes Gastric Cancer Metastasis by Regulating Epithelial-Mesenchymal Transition  Huazhang Wu, Ying.
Mst1 Is an Interacting Protein that Mediates PHLPPs' Induced Apoptosis
Volume 15, Issue 5, Pages (September 2004)
Volume 16, Issue 1, Pages (June 2016)
Volume 18, Issue 3, Pages (March 2010)
MiR-409 Inhibits Human Non-Small-Cell Lung Cancer Progression by Directly Targeting SPIN1  Qi Song, Quanbo Ji, Jingbo Xiao, Fang Li, Lingxiong Wang, Yin.
Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB
Molecular Therapy - Nucleic Acids
The Expression of MicroRNA-598 Inhibits Ovarian Cancer Cell Proliferation and Metastasis by Targeting URI  Feng Xing, Shuo Wang, Jianhong Zhou  Molecular.
Volume 26, Issue 10, Pages (October 2018)
Molecular Therapy - Oncolytics
Volume 23, Issue 4, Pages (April 2015)
Rumwald Leo G Lecaros, Leaf Huang, Tsai-Chia Lee, Yih-Chih Hsu 
Presentation transcript:

Hydrogen Sulfide Demonstrates Promising Antitumor Efficacy in Gastric Carcinoma by Targeting MGAT5  Rui Wang, Qilin Fan, Junjie Zhang, Xunan Zhang, Yuqi Kang, Zhirong Wang  Translational Oncology  Volume 11, Issue 4, Pages 900-910 (August 2018) DOI: 10.1016/j.tranon.2018.04.008 Copyright © 2018 The Authors Terms and Conditions

Figure 1 H2S downregulates the expression of MGAT5 and inhibits its activity. (A). After treatment with various concentrations of NaHS for 24 h, cell extracts were prepared and applied to immunoblotting with MGAT5. GAPDH was used as a loading control. (B). quantitative real-time PCR analysis the expression of MGAT5 mRNA in GC cells after 24 hours with treatment NaHS at various concentrations. (C). Immunofluorescence staining of MGAT5 in GC cells treated with NaHS at 100 μM after 24 hours. (D). The effect of H2S on MGAT5 activity inhibition in different cells. Various concentrations of NaHS were added to GC cells. The activity of MGAT5 was determined by the HPLC methods using pyridiylaminated GlcNAc2Man3GlcNAc2 as acceptor substrate in the absence of Mn2+. Each bar represents the means ± S.D. of three independent experiments. Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions

Figure 2 H2S inhibits MGAT5 activity though specifically dissociation of KPNA2 with c-Jun interaction. (A). After treatment with various concentrations of NaHS for 24 h, cell extracts were prepared and applied to immunoblotting with c-jun and KPNA2. GAPDH was used as a loading control. (B). The cAMP activity was assayed by HTRF. Various concentrations of NaHS were added to GC cells. (C). Western blotting of protein on the mTOR signaling pathway in BGC823 cells after 24 hours with NaHS treatment indicated various concentrations. GAPDH was used as a loading control. (D). Co-Immunoprecipitation detection the relationship between KPNA2 and c-Jun with NaHS treatment after 24 hours in BGC823 and MKN45. (E). Western blotting assayed c-Jun from nuclear and cytoplasmic extracts of GC cells treated with various concentrations for 24 hours. Lamin A and GAPDH was used as a loading control. (F). Immunofluorescence staining of c-Jun in GC cells treated with NaHS at 100 μM after 24 hours. (G). Luciferase reporter assay measuring AP-1 activity in GC cells transiently co-transfected with pAP-1-Luc with NaHS treatment for 24 hours at 100 μM. (H). EMSA assay of DNA binding to AP-1 in the nuclei extracts from BGC823 and MKN45 cells after NaHS treatment for 24 hours at 100 μM. Results are repetitive from at least two independent experiments. (I). GC cells were incubated with NaHS and analyzed by a quantitative ChIP assay with anti-c-Jun antibody. (J). The inhibitory effect of H2S on migration of serum free stimulated stably KPNA2 over-expression in BGC823. Each bar represents the means ± S.D. of three independent experiments. Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions

Figure 3 H2S suppresses MGAT5-promoted GC cells growth. (A). FACS analysis of apoptosis in GC cells after 24 hours with treatment NaHS at various concentrations. (B). After treatment with various concentrations of NaHS for 24 h, cell extracts were prepared and applied to immunoblotting with apoptosis relevant protein. GAPDH was used as a loading control. (C). BrdU proliferation assay measuring GC cells proliferation capacity with NaHS treatment on various concentrations. Seahorse XF24 Extracellular Flux Analyzer examined the inhibitory effect of H2S on cellular metabolism capacity of serum free stimulated stably MGAT5 over-expression in GC cells with NaHS treatment for 200 minutes at 100 μM. (D). Glycolytic Function. (E). Mitochondrial Respiration. (F). Fatty Acid Oxidation. (G). The effect of NaHS solution on 2-deoxtglucose uptake in GC cells. (H). Chemiluminescence analysis assayed the level of ROS in GC cells after 24 hours with treatment NaHS at various concentrations. Each bar represents the means ± S.D. of three independent experiments. Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions

Figure 4 H2S inhibits MGAT5-promoted GC cells migration and invasion. (A). Wound healing assayed that the inhibitory effect of H2S to migration for serum free stimulated GC cells. Up panel: treatment of H2S, the migration capacity was detected. a. BGC823, b. MGC803, and c. MKN45. Down panel: quantification of the inhibition activity of H2S on migration. (B). Transwell assayed that the inhibitory effect of H2S to invasion for serum free stimulated GC cells. Up panel: treatment of H2S, the invasion capacity was detected. a. BGC823, b. MGC803, and c. MKN45. Down panel: quantification of the inhibition activity of H2S on invasion. (C). Western blotting assayed EMT relevant protein on GC cells after 24 hours of treatment with NaHS at various concentrations. GAPDH was used as a loading control. (D). The inhibitory effect of H2S on migration of serum free stimulated MGAT5 over-expression in BGC823. Each bar represents the means ± S.D. of three independent experiments. Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions

Figure 5 H2S inhibits tumor growth and metastasis in gastric carcinoma Xenografts. (A). Effect of H2S on lung metastasis of human gastric carcinoma cell BGC823 in mice orthotopic Xenotransplantation model. Left. representative bioluminescence imaging of metastatic nodules on lungs. Right. The BGC823 colonies were measured. (n = 3 flanks and 4 mice in each group). (B). Effect of H2S on lung metastasis of human gastric carcinoma cell BGC823 in mice orthotopic Xenotransplantation model. Left. representative bioluminescence imaging of metastatic nodules on lungs. Right. HE staining and IHC staining of Ki67 representative photograph of metastatic nodules on lungs. (C). Tumor growth inhibition upon H2S treatment in BGC823 gastric carcinoma mice subcutaneous Xenografts tumor model. a. The curve of tumor growth after 15-days treatment of H2S. b. Experimental inhibitory effects of H2S on BGC823 Xenografts in nude mice. The percentage of relative tumor volume inhibition values was measured on the last day during the experiment. (D). Effect of H2S against primary tumor growth and angiogenesis. A typical photograph of IHC staining of MGAT5, CD31, and cleaved-caspase-3. (E). Inhibition of the expression of MGAT5 in BGC823 mice orthotopic Xenotransplantation model by H2S. Mice were humanely euthanized on the last day at 2 hours post-administration of H2S and the tumors were resected. Equal amounts of proteins of tumor tissues were evaluated for expression of MGAT5 levels. (F). The level of H2S in the plasma of mice orthotopic Xenotransplantation model. Data are shown as means ± S.D. (n = 3 flanks and 4 mice in each group). Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions

Figure 6 The potential toxicity of H2S in vitro and in vivo. (A). Body weight of tumor-bearing mice measured at the indicated times. Apoptotic and metabolism assayed at the indicated concentration by FACS and Seahorse XF24 extracellular Flux Analyzer in human normal gastric cells GES-1. (B). Representative FACS plots and quantitative data of apoptotic rate. Treatment of H2S, (C). Glycolysis Function and (D). Mitochondrial Respiration rates were detected. Each bar represents the means ± S.D. of three independent experiments. Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions

Figure 7 Hydrogen Sulfide demonstrates promising antitumor efficacy in gastric carcinoma by targeting MGAT5. Schematic illustration of our systems biology approach to identify H2S may be an important MGAT5 inhibitor and their corresponding targets. H2S specifically dissociation of KPNA2 with c-Jun interaction, and blocking c-Jun nuclear translocation, and downregulation of MGAT5 expression at the level of gene and protein. H2S inhibited MGAT5 activity lead to suppress metabolism, substratum focal adhesion turn-over, reduce the expression of exclusively abnormal glycoprotein processes, and disturb cell cyclin. It provides insights into a better understanding of the molecular mechanisms of H2S in anti-cancer effects which are required for further application in translational medicine. Translational Oncology 2018 11, 900-910DOI: (10.1016/j.tranon.2018.04.008) Copyright © 2018 The Authors Terms and Conditions