Koichiro Uriu, Luis G. Morelli  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Negative Feedback Synchronizes Islets of Langerhans
Advertisements

Volume 112, Issue 7, Pages (April 2017)
Volume 109, Issue 11, Pages (December 2015)
Sukant Mittal, Ian Y. Wong, William M. Deen, Mehmet Toner 
Wenjun Zheng, Han Wen, Gary J. Iacobucci, Gabriela K. Popescu 
Volume 129, Issue 2, Pages (April 2007)
Precision and Variability in Bacterial Temperature Sensing
Volume 112, Issue 7, Pages (April 2017)
Spontaneous Synchronization of Coupled Circadian Oscillators
Bipedal Locomotion in Crawling Cells
Dynamics of Active Semiflexible Polymers
Substrate Viscosity Enhances Correlation in Epithelial Sheet Movement
Adam M. Corrigan, Jonathan R. Chubb  Current Biology 
Volume 113, Issue 12, Pages (December 2017)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Self-Organization of Myosin II in Reconstituted Actomyosin Bundles
Negative Feedback Synchronizes Islets of Langerhans
Michiel W.H. Remme, Máté Lengyel, Boris S. Gutkin  Neuron 
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Volume 111, Issue 2, Pages (July 2016)
Is Aggregate-Dependent Yeast Aging Fortuitous
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Cellular Contraction Can Drive Rapid Epithelial Flows
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Volume 114, Issue 12, Pages (June 2018)
Volume 114, Issue 5, Pages (March 2018)
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Pattern Selection by Dynamical Biochemical Signals
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Volume 107, Issue 11, Pages (December 2014)
Critical Timing without a Timer for Embryonic Development
Volume 107, Issue 7, Pages (October 2014)
Volume 103, Issue 2, Pages (July 2012)
Volume 106, Issue 1, Pages (January 2014)
Florian Hinzpeter, Ulrich Gerland, Filipe Tostevin  Biophysical Journal 
Coherent Motions in Confluent Cell Monolayer Sheets
Statistics of Active Transport in Xenopus Melanophores Cells
Will J. Eldridge, Zachary A. Steelman, Brianna Loomis, Adam Wax 
Volume 109, Issue 3, Pages (August 2015)
Teuta Pilizota, Joshua W. Shaevitz  Biophysical Journal 
Volume 97, Issue 9, Pages (November 2009)
Phase Behavior of DNA in the Presence of DNA-Binding Proteins
Dynamics of Active Semiflexible Polymers
On the Quantification of Cellular Velocity Fields
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 83, Issue 5, Pages (November 2002)
Robust Driving Forces for Transmembrane Helix Packing
Cell Growth and Size Homeostasis in Silico
Mechanics of Individual Keratin Bundles in Living Cells
Volume 108, Issue 10, Pages (May 2015)
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Volume 98, Issue 1, Pages (January 2010)
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell
Volume 107, Issue 3, Pages (August 2014)
Volume 113, Issue 10, Pages (November 2017)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 104, Issue 4, Pages (February 2013)
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Volume 107, Issue 11, Pages (December 2014)
Volume 114, Issue 6, Pages (March 2018)
Volume 93, Issue 8, Pages (October 2007)
Quantitative Modeling and Optimization of Magnetic Tweezers
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Volume 106, Issue 8, Pages (April 2014)
Presentation transcript:

Collective Cell Movement Promotes Synchronization of Coupled Genetic Oscillators  Koichiro Uriu, Luis G. Morelli  Biophysical Journal  Volume 107, Issue 2, Pages 514-526 (July 2014) DOI: 10.1016/j.bpj.2014.06.011 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Theoretical description of collective cell movement in the zebrafish tailbud. (A) Two-dimensional Voronoi tessellation represents cell shape. The green dots indicate cell centers. (B) Contact length lij (red) and intercellular distance rij (orange) between cells i and j. (C) Repulsive force F is a function of the distance rij between cells i and j, see Eq. 2. (D) Polarity ni aligns toward instantaneous velocity vi, see Eq. 3. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Uncorrelated movement of cells enhances synchronization, as shown by numerical simulations of Eqs. 1–5 with κφ = 0 in Eq. 3. (A) Dependence of the average velocity modulus over a cell population 〈v〉i on the ratio of self-propulsion speed to the coefficient of intercellular force strength v0/μ. The arrows point to v0/μ = 0.03 (blue), 0.12 (green), and 1.2 (red). (B–D) Probability density of |vi| for (B) v0/μ = 0.03, (C) v0/μ = 0.12, and (D) v0/μ = 1.2. Insets show trajectories of two cells for 0 ≤ t ≤ 10, with dots indicating cell positions at t = 0. (E) Time evolution of m(t) defined in Eq. 9. (F) Time evolution of the average phase order parameter 〈Z(t)〉 defined in Eq. 10. (G–I) Phase profiles for (G) v0/μ = 0.03, (H) v0/μ = 0.12, and (I) v0/μ = 1.2. The color indicates the intensity determined by (1 + sinθi)/2, see color code bar. Error bars in (A) and (F) indicate standard deviation (SD). In all panels: L = 24, N = 800, v0 = 1.2, κφ = 0, ω = 2.1, Dθ = 0.1, and Dφ = 0.5. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Persistent cell movement enhances synchronization in the absence of spatial velocity correlations. (A) Time evolution of average phase order parameter 〈Z(t)〉 for different values of polarity noise intensities Dφ. Error bars indicate the SD. (B) Velocity autocorrelation Ca(t) defined by Eq. 7 for different values of Dφ. (C) Time evolution of m(t) for different values of Dφ. In all panels, L = 24, N = 800, v0 = 1.2, μ = 10, κφ = 0, ω = 2.1, and Dθ = 0.1 in Eqs. 1–5. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Correlation of direction of motion between cells. (A–C) Direction of velocity vector vi/|vi| for each cell represented by arrows for different ratios of the polarity alignment strength to the polarity noise intensity κφ/Dφ. For illustration, small square domains (12 × 12) of a system are shown. (D) Dependence of the cross correlation C of unit velocity vector vi/|vi| defined by Eq. 8 on the distance between cells r for the different values of κφ/Dφ. (E) Dependence of the average velocity order parameter 〈Φ〉 in Eq. 6 on the ratio κφ/Dφ. Arrows point to κφ/Dφ = 0 (red), 1.6 (green), and 3.2 (blue). The solid circles indicate the steady-state values of 〈Φ〉. (F) Dependence of the average velocity modulus 〈v〉i on κφ/Dφ. Error bars indicate the SD. (G) Velocity autocorrelation Ca for different values of κφ/Dφ. In all panels, L = 24, N = 800, v0 = 1.2, μ = 10, and Dφ = 0.5 in Eqs. 1–3. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Optimal polarity alignment strength for synchronization. Time evolution of (A) the average phase order parameter 〈Z(t)〉 and (B) the mean squared difference of displacement vectors m(t) for the different ratios of the polarity alignment strength to the polarity noise intensity κφ/Dφ. (C) Dependence of the mixing rate λ on κφ/Dφ. (D) Dependence of 〈Z〉 on κφ/Dφ. 〈Z〉 at several time points is plotted. (E) Dependence of 〈Z〉 at t = 100 on κφ/Dφ for different domain lengths L. In all panels, v0 = 1.2, μ = 10, Dφ = 0.5, ω = 2.1, and Dθ = 0.1 in Eqs. 1–5. Error bars in (A, D, and E) indicate the SD. In (A–D), L = 24 and N = 800. In (E), N = 400,800,1600 for L = 17,24,34, respectively. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Optimal short-range velocity correlation for synchronization of coupled oscillators. (A) Dependence of average phase order parameter 〈Z〉 on the ratio of the polarity alignment strength κφ to the polarity noise intensity Dφ in Eq. 11. Error bars indicate the SD. (B) Dependence of cell mixing rate λ on κφ/Dφ in Eq. 11. (C) Velocity cross correlation generated with the optimal values of κφ/Dφ for synchronization in two different polarity alignment rules, Eq. 3 and Eq. 11. The curved lines are visual guides. Inset: Log-linear plot of the velocity cross correlation. An exponential function is fitted for short lengthscales (first five data points) to obtain the correlation length rc. In all panels, L = 24, N = 800, v0 = 1.2, μ = 10, Dφ = 0.5, ω = 2.1, and Dθ = 0.1 in Eqs. 1, 2, 4, 5, and 11. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 7 A short-range velocity correlation disturbs spatial phase waves and leads to global synchronization. (A) Kinematic phase wave for κφ/Dφ = 0 (top) and its destabilization for κφ/Dφ = 1.6 (bottom). The blue arrows indicate the direction of motion of the phase wave. The color indicates the intensity determined by (1 + sin θi)/2 as in Fig. 2. (B) Time evolution of the phase order parameter Z(t) for different values of κφ/Dφ, starting from an initial condition with a phase gradient Eq. 12. A single realization for each κφ/Dφ is plotted. (C–E) Histogram of the order parameter Z at t = 1000 for (C) κφ/Dφ = 0, (D) κφ/Dφ = 1.6, and (E) κφ/Dφ = 3.2 when the initial condition of the simulations is a phase gradient Eq. 12. (F) Time evolution of m(t) for different values of v0/μ. Inset: velocity cross correlation C(r) for corresponding v0/μ. (G and H) Histogram of the order parameter Z at t = 1000 for (G) v0/μ = 0.5, and (H) v0/μ = 1.2. In all panels, L = 24, N = 800, v0 = 1.2, Dφ = 0.5, ω = 2.1, and Dθ = 0.1 in Eqs. 1–5. For (A–E) μ = 10. For (F–H) κφ = 0.8. In (C–E, G, and H), the results of 200 different realizations are used for each histogram. To see this figure in color, go online. Biophysical Journal 2014 107, 514-526DOI: (10.1016/j.bpj.2014.06.011) Copyright © 2014 Biophysical Society Terms and Conditions