Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.

Slides:



Advertisements
Similar presentations
Unit 5 - Chpt 13 & 17 - Equilibrium and Thermochemistry Part II
Advertisements

Chemical Equilibrium AP Chem Unit 13.
ADVANCED PLACEMENT CHEMISTRY EQUILIBRIUM. Chemical equilibrium * state where concentrations of products and reactants remain constant *equilibrium is.
Chapter 13 Chemical Equilibrium.
Chemical Equilibrium Chapter 13. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the.
A.P. Chemistry Chapter 13 Equilibrium Equilibrium is not static, but is a highly dynamic state. At the macro level everything appears to have stopped.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemical Equilibrium The state where the concentrations of all reactants and products.
1 Chemical Equilibrium Chapter 13 AP CHEMISTRY. 2 Chemical Equilibrium  The state where the concentrations of all reactants and products remain constant.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Figure 13.1 A Molecular Representation of the Reaction 2NO 2 (g)      g) Over.
Chemical Equilibrium Chapter 13.
Chemical Equilibrium The reversibility of reactions.
Chapter 13 Chemical Equilibrium. Section 13.1 The Equilibrium Condition Copyright © Cengage Learning. All rights reserved 2 Chemical Equilibrium  The.
Chemical Equilibrium The reversibility of reactions.
Chapter AP Chem Chemical Equilibrium.
Chapter Thirteen: CHEMICAL EQUILIBRIUM.
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Chemical Equilibrium Chapter 13. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the.
Chapter 13 Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there.
Chapter 13 Chemical Equilibrium: How can things that are moving seem to be standing still?
Chapter 13 Chemical Equilibrium AP*. AP Learning Objectives  LO 6.1 The student is able to, given a set of experimental observations regarding physical,
Chapter 13.  Equilibrium is not static. It is a highly dynamic state.  Macro level reaction appears to have stopped  Molecular level frantic activity.
Chapter 13 Chemical Equilibrium Chapter 13 Table of Contents Copyright © Cengage Learning. All rights reserved The Equilibrium Condition 13.2The.
Chapter 9 Chemical Reactions. Section 9.4 Collision Theory and Chemical Reactions Copyright © Cengage Learning. All rights reserved 2 Molecular Collisions.
SSS 3 1 st Class General Equilibrium. Copyright © Cengage Learning. All rights reserved 2 Chemical Equilibrium The state where the concentrations of all.
13.1 EQUILIBRIUM CONDITION CHEMICAL EQUILIBRIUM The state where the concentrations of all reactants and products remain constant with time. On the molecular.
Chapter 17 Equilibrium. Section 17.1 How Chemical Reactions Occur Return to TOC Copyright © Cengage Learning. All rights reserved 2 Collision Model Molecules.
CHEMICAL EQUILIBRIUM. OVERVIEW Describing Chemical Equilibrium – Chemical Equilibrium – A Dynamic Equilibrium (the link to Chemical Kinetics) – The Equilibrium.
Chapter 13 Chemical Equilibrium. Chapter 13 Table of Contents Copyright © Cengage Learning. All rights reserved The Equilibrium Condition 13.2The.
Chemical Equilibrium. The Equilibrium Condition So far, we have assumed that reactions proceed to completion. Many actually fall short of completion and.
Chapter 13 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter Fourteen Chemical Equilibrium.
Chapter 13 Equilibrium Dr. Walker DE Chemistry.
Chemical Equilibrium.
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical equilibria.
The reversibility of reactions
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Chemical Equilibrium Chapter 13.
CHEMICAL EQUILIBRIUM.
Table of Contents (13.1) The equilibrium condition
Chemical Equilibrium.
Chemical Equilibrium Chapter 13
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical biological, or environmental processes that are reversible,
Chemical Equilibrium Chapter
Ppt 808 EQUILIBRIUM: IS ESTABLISHED WHEN THE RATE OF THE FORWARD REACTION EQUALS THE REVERSE RATE. AT EQUILIBRIUM THE MOLARITIES OF ALL SPECIES ARE STABLE,
CHEMICAL EQUILIBRIUM Chapter 13
CHEMICAL EQUILIBRIUM.
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical biological, or environmental processes that are reversible,
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Solving Equilibrium Problems
Problem-Solving Strategy - Solving Equilibrium Problems
Ch. 13 CHEMICAL EQUILIBRIUM
CHEMICAL EQUILIBRIUM.
Chemical Equilibrium.
Chemical Equilibrium.
Chapter 15 Chemical Equilibrium
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
The reversibility of reactions
Chemical Equilibrium Equal but Opposite Reaction Rates
13.1 CHEMICAL EQUILIBRIUM Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action.
Chapter 15 Chemical Equilibrium
Chapter 18 Chemical Equilibrium
The Extent of a Reaction
Chemical Equilibrium Reversible Reactions:
CHEMICAL EQUILIBRIUM Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action.
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
Chapter Thirteen: CHEMICAL EQUILIBRIUM.
CHEMICAL EQUILIBRIUM Chapter 13.
Presentation transcript:

Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic activity. Equilibrium is not static, but is a highly dynamic situation. Copyright © Cengage Learning. All rights reserved

H2O+CO→H2 +CO2 Figure 13.2 shows the plot of the concentration of the reactants and products verses time. CO and H2O are present in equal molar quantities. Since they react in 1:1 ratio, the concentration of the two gases are always equal. Since H2 and CO2 are formed in equal amount they are always present in the same concentration. Beyond certain time, indicated by the dashed line in figure 13. 2. equilibrium has reaced.

Equilibrium Is: Macroscopically static Microscopically dynamic Copyright © Cengage Learning. All rights reserved

Changes in Concentration N2(g) + 3H2(g) 2NH3(g) Copyright © Cengage Learning. All rights reserved

Chemical Equilibrium Concentrations reach levels where the rate of the forward reaction equals the rate of the reverse reaction. The system has reached equilibrium. We will now consider the equilibrium phenomenon in terms of the rates of opposing reactions. Copyright © Cengage Learning. All rights reserved

The Changes with Time in the Rates of Forward and Reverse Reactions Copyright © Cengage Learning. All rights reserved

H2O(g) + CO(g) H2(g) + CO2(g) CONCEPT CHECK! Consider an equilibrium mixture in a closed vessel reacting according to the equation: H2O(g) + CO(g) H2(g) + CO2(g) You add more H2O(g) to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer. The concentrations of each product will increase, the concentration of CO will decrease, and the concentration of water will be higher than the original equilibrium concentration, but lower than the initial total amount. Students may have many different answers (hydrogen goes up, but carbon dioxide in unchanged, etc.) Let them talk about this for a while – do not go over the answer until each group of students has come up with an explanation. This question also sets up LeChâtelier’s principle for later. Copyright © Cengage Learning. All rights reserved

H2O(g) + CO(g) H2(g) + CO2(g) CONCEPT CHECK! Consider an equilibrium mixture in a closed vessel reacting according to the equation: H2O(g) + CO(g) H2(g) + CO2(g) You add more H2 to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer. This is the opposite scenario of the previous slide. The concentrations of water and CO will increase. The concentration of carbon dioxide decreases and the concentration of hydrogen will be higher than the original equilibrium concentration, but lower than the initial total amount. Copyright © Cengage Learning. All rights reserved

[C] [D] K = [A] [B] jA + kB lC + mD l m j k Consider the following reaction at equilibrium: Guldberg and Waage proposed the law of mass action as a general description of the equilibrium. jA + kB lC + mD A, B, C, and D = chemical species. Square brackets = concentrations of species at equilibrium. j, k, l, and m = coefficients in the balanced equation. K = equilibrium constant (given without units). l m [C] [D] K = [A] j [B] k Copyright © Cengage Learning. All rights reserved

Conclusions About the Equilibrium Expression Equilibrium expression for a reaction is the reciprocal of that for the reaction written in reverse. When the balanced equation for a reaction is multiplied by a factor of n, the equilibrium expression for the new reaction is the original expression raised to the nth power; thus Knew = (Koriginal)n. K values are usually written without units. Copyright © Cengage Learning. All rights reserved

Equilibrium concentrations will not always be the same. K always has the same value at a given temperature regardless of the amounts of reactants or products that are present initially. For a reaction, at a given temperature, there are many equilibrium positions but only one equilibrium constant, K. Equilibrium concentrations will not always be the same. The equilibrium constant which depends on the ratio of the concentrations, remains the same. Equilibrium position is a set of equilibrium concentrations. There is only one equilibrium constant for a particular system at a particular temperature, but there are an infinite number of equilibrium positions. Copyright © Cengage Learning. All rights reserved

K involves concentrations. Kp involves pressures. PV = nRT or P=(n/V)RT = CRT, C=n/V (the no. of moles of gas per unit volume V). N2(g) + 3H2(g) 2NH3(g) K = [NH3]2/[N2][H2]3 Kc = C(NH3)2/(CN2)(CH23) = Homogeneous Reactions: i) same no. of molecules on both sides of the equation ii) Different no. of molecules on both sides of the equation Heterogeneous Reactions: involves more than one phase. Symbols K and Kc are used for equilibrium constant. K is used in this book. Copyright © Cengage Learning. All rights reserved

Example N2(g) + 3H2(g) 2NH3(g) At 500 0C the value of K = 6.0 x10-2, regardless of the amounts of the gases that are mixed to an equilibrium position. Copyright © Cengage Learning. All rights reserved

Example N2(g) + 3H2(g) 2NH3(g) Equilibrium pressures at a certain temperature: Copyright © Cengage Learning. All rights reserved

Example N2(g) + 3H2(g) 2NH3(g) Copyright © Cengage Learning. All rights reserved

The Relationship Between K and Kp Kp = K(RT)Δn Δn = sum of the coefficients of the gaseous products minus the sum of the coefficients of the gaseous reactants. R = 0.08206 L·atm/mol·K T = temperature (in Kelvin) Copyright © Cengage Learning. All rights reserved

Example N2(g) + 3H2(g) 2NH3(g) Using the value of Kp (3.9 × 104) from the previous example, calculate the value of K at 35°C. Copyright © Cengage Learning. All rights reserved

Homogeneous Equilibria Homogeneous equilibria – involve the same phase: N2(g) + 3H2(g) 2NH3(g) HCN(aq) H+(aq) + CN-(aq) Copyright © Cengage Learning. All rights reserved

Heterogeneous Equilibria Heterogeneous equilibria – involve more than one phase: 2KClO3(s) 2KCl(s) + 3O2(g) 2H2O(l) 2H2(g) + O2(g) Copyright © Cengage Learning. All rights reserved

The concentrations of pure liquids and solids are constant. The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids present. The concentrations of pure liquids and solids are constant. 2KClO3(s) 2KCl(s) + 3O2(g) Copyright © Cengage Learning. All rights reserved

The Extent of a Reaction A value of K much larger than 1 means that at equilibrium the reaction system will consist of mostly products – the equilibrium lies to the right. Reaction goes essentially to completion. Copyright © Cengage Learning. All rights reserved

The Extent of a Reaction A very small value of K means that the system at equilibrium will consist of mostly reactants – the equilibrium position is far to the left. Reaction does not occur to any significant extent. Copyright © Cengage Learning. All rights reserved

CONCEPT CHECK! If the equilibrium lies to the right, the value for K is __________. large (or >1) If the equilibrium lies to the left, the value for K is ___________. small (or <1) Large (or >1); small (or < 1) Copyright © Cengage Learning. All rights reserved

Reaction Quotient, Q Used when all of the initial concentrations are nonzero. Apply the law of mass action using initial concentrations instead of equilibrium concentrations. Copyright © Cengage Learning. All rights reserved

Reaction Quotient, Q Q = K; The system is at equilibrium. No shift will occur. Q > K; The system shifts to the left. Consuming products and forming reactants, until equilibrium is achieved. Q < K; The system shifts to the right. Consuming reactants and forming products, to attain equilibrium. Copyright © Cengage Learning. All rights reserved

Consider the reaction represented by the equation: EXERCISE! Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Trial #1: 6.00 M Fe3+(aq) and 10.0 M SCN-(aq) are mixed at a certain temperature and at equilibrium the concentration of FeSCN2+(aq) is 4.00 M. What is the value for the equilibrium constant for this reaction? Note: Use the red box animation to assist in explaining how to solve the problem. Copyright © Cengage Learning. All rights reserved

Set up ICE Table Fe3+(aq) + SCN–(aq) FeSCN2+(aq) Initial 6.00 10.00 0.00 Change – 4.00 – 4.00 +4.00 Equilibrium 2.00 6.00 4.00 K = 0.333 The value for K is 0.333. Copyright © Cengage Learning. All rights reserved

EXERCISE! Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Trial #2: Initial: 10.0 M Fe3+(aq) and 8.00 M SCN−(aq) (same temperature as Trial #1) Equilibrium: ? M FeSCN2+(aq)  5.00 M FeSCN2+ The answer for Trial #2 is 5.00 M. The students can solve this with the quadratic but it is not necessary. The numbers have been chosen to be relatively easy to solve (trial and error works well and will only take a short period of time). Tell the students the problems will not always have numbers like these, so take the time to understand what is going on (so the math doesn’t “get in the way”). Have the students write ICE tables for these. Copyright © Cengage Learning. All rights reserved

EXERCISE! Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Trial #3: Initial: 6.00 M Fe3+(aq) and 6.00 M SCN−(aq) Equilibrium: ? M FeSCN2+(aq) 3.00 M FeSCN2+ The answer for Trial #3 is 3.00 M. The students can solve this with the quadratic but it is not necessary. The numbers have been chosen to by relatively easy to solve (trial and error works well and will only take a short period of time). Tell the students the problems will not always have numbers like these, so take the time to understand what is going on (so the math doesn’t “get in the way”). Have the students write ICE tables for these. Copyright © Cengage Learning. All rights reserved

Solving Equilibrium Problems Write the balanced equation for the reaction. Write the equilibrium expression using the law of mass action. List the initial concentrations. Calculate Q, and determine the direction of the shift to equilibrium. Copyright © Cengage Learning. All rights reserved

Solving Equilibrium Problems 5) Define the change needed to reach equilibrium, and define the equilibrium concentrations by applying the change to the initial concentrations. Substitute the equilibrium concentrations into the equilibrium expression, and solve for the unknown. Check your calculated equilibrium concentrations by making sure they give the correct value of K. Copyright © Cengage Learning. All rights reserved

EXERCISE! Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Fe3+ SCN- FeSCN2+ Trial #1 9.00 M 5.00 M 1.00 M Trial #2 3.00 M 2.00 M 5.00 M Trial #3 2.00 M 9.00 M 6.00 M Find the equilibrium concentrations for all species. Copyright © Cengage Learning. All rights reserved

EXERCISE! Answer Trial #1: [Fe3+] = 6.00 M; [SCN-] = 2.00 M; [FeSCN2+] = 4.00 M Trial #2: [Fe3+] = 4.00 M; [SCN-] = 3.00 M; [FeSCN2+] = 4.00 M Trial #3: [Fe3+] = 2.00 M; [SCN-] = 9.00 M; [FeSCN2+] = 6.00 M Trial #1: [Fe3+] = 6.00 M; [SCN-] = 2.00 M; [FeSCN2+] = 4.00 M Trial #2: [Fe3+] = 4.00 M; [SCN-] = 3.00 M; [FeSCN2+] = 4.00 M Trial #3: [Fe3+] = 2.00 M; [SCN-] = 9.00 M; [FeSCN2+] = 6.00 M This problem will provide a good discussion of Q vs. K. Trial #1 proceeds to the right to reach equilibrium, Trial #2 proceeds to the left, and Trial #3 is at equilibrium. Watch for students setting up an ICE chart without thinking about which direction the reaction must proceed initially. Be prepared for some discussion about the fact that in the Change row we can have a “-x” on the right side and a “+x” on the left side and still use the same expression for K. Use this so that students can think about the direction the reaction must proceed initially so that they needed memorize a relationship between Q and K. The students can solve this with the quadratic but it is not necessary. The numbers have been chosen to be relatively easy to solve. Tell the students the problems will not always have numbers like these, so take the time to understand what is going on (so the math doesn’t “get in the way”). Copyright © Cengage Learning. All rights reserved

At equilibrium 1.00 mol of ammonia remains. CONCEPT CHECK! A 2.0 mol sample of ammonia is introduced into a 1.00 L container. At a certain temperature, the ammonia partially dissociates according to the equation: NH3(g) N2(g) + H2(g) At equilibrium 1.00 mol of ammonia remains. Calculate the value for K. K = 1.69 K = 1.69 This answer assumes the students have balanced the equation with relative coefficients of 2:1:3. Note: Use the red box animation to assist in explaining how to solve the problem. Copyright © Cengage Learning. All rights reserved

CONCEPT CHECK! A 1.00 mol sample of N2O4(g) is placed in a 10.0 L vessel and allowed to reach equilibrium according to the equation: N2O4(g) 2NO2(g) K = 4.00 × 10-4 Calculate the equilibrium concentrations of: N2O4(g) and NO2(g). Concentration of N2O4 = 0.097 M Concentration of NO2 = 6.32 × 10-3 M Concentration of N2O4 = 0.097 M Concentration of NO2 = 6.32 x 10-3 M (without quadratic) or Concentration of N2O4 = 0.094 M Concentration of NO2 = 6.22 x 10-3 M (with quadratic) Use this problem to discuss the 5% allowable error (so we can assume x is negligible). Make sure the students understand we are NOT saying x is equal to zero but that x is negligible. This is a subtle but very important point. Note: Use the red box animation to assist in explaining how to solve the problem. Copyright © Cengage Learning. All rights reserved

If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change. Copyright © Cengage Learning. All rights reserved

Effects of Changes on the System Concentration: The system will shift away from the added component. If a component is removed, the opposite effect occurs. Temperature: K will change depending upon the temperature (endothermic – energy of a reactant; exothermic – energy of a product). N2+H2→2NH3 + 92 KJ Exothermic reaction, and the equilibrium shift to the left. This shift decreases the concentration of ammonia and increases the concentration of nitrogen and hydrogen. It decreases the value of K. 556 KJ + CaCO3(s) →CaO(s) +CO2(g) Endothermic reaction, and the equilibrium shift to the right. This shift increases the concentration CaO and CO2 and decreases the concentration of CaCO3. It increases the value of K. Copyright © Cengage Learning. All rights reserved

Effects of Changes on the System Pressure: The system will shift away from the added gaseous component. If a component is removed, the opposite effect occurs. Addition of inert gas does not affect the equilibrium position. The addition of inert gas increases the total pressure, but has no effect on the concentration or the partial pressure of the reactant or product. Hence the added molecule do not participate the in the reaction and cannot effect the equilibrium Decreasing the volume shifts the equilibrium toward the side with fewer moles of gas. In N2+3H2→2NH3 system will shift to the right, reducing the total number of gaseous molecules present. The opposite is also true. If we increase the volume system will shift to increase the volume . An increase in in volume in ammonia synthesis system will produce a shift to the left to increase the total number of gaseous molecules present. Copyright © Cengage Learning. All rights reserved

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Equilibrium Decomposition of N2O4 To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved