Minimum Spanning Trees

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
Advertisements

© 2004 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 Minimum Spanning Tree Prim-Jarnik algorithm Kruskal algorithm.
Spring 2007Shortest Paths1 Minimum Spanning Trees JFK BOS MIA ORD LAX DFW SFO BWI PVD
Shortest Paths1 C B A E D F
1 Graphs ORD DFW SFO LAX Many slides taken from Goodrich, Tamassia 2004.
Greedy Algorithms Reading Material: Chapter 8 (Except Section 8.5)
Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
© 2004 Goodrich, Tamassia Shortest Paths1 Shortest Paths (§ 13.6) Given a weighted graph and two vertices u and v, we want to find a path of minimum total.
© 2004 Goodrich, Tamassia Minimum Spanning Trees1 Minimum Spanning Trees (§ 13.7) Spanning subgraph Subgraph of a graph G containing all the vertices of.
Greedy Algorithms Like dynamic programming algorithms, greedy algorithms are usually designed to solve optimization problems Unlike dynamic programming.
Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
CSC311: Data Structures 1 Chapter 13: Graphs II Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
Shortest Paths1 C B A E D F
© 2004 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
CSC 213 Lecture 24: Minimum Spanning Trees. Announcements Final exam is: Thurs. 5/11 from 8:30-10:30AM in Old Main 205.
1 Minimum Spanning Trees Longin Jan Latecki Temple University based on slides by David Matuszek, UPenn, Rose Hoberman, CMU, Bing Liu, U. of Illinois, Boting.
1 Minimum Spanning Trees Longin Jan Latecki Temple University based on slides by David Matuszek, UPenn, Rose Hoberman, CMU, Bing Liu, U. of Illinois, Boting.
Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances,
Minimum Spanning Trees
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 Minimum Spanning Tree Problem Topic 10 ITS033 – Programming & Algorithms Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program, Image and Vision Computing.
Shortest Paths C B A E D F
Graphs Part 2. Shortest Paths C B A E D F
10/2/2015 3:00 PMCampus Tour1. 10/2/2015 3:00 PMCampus Tour2 Outline and Reading Overview of the assignment Review Adjacency matrix structure (§12.2.3)
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Minimum-Cost Spanning Tree CS 110: Data Structures and Algorithms First Semester,
Shortest Paths 1 Chapter 7 Shortest Paths C B A E D F
Lecture 16. Shortest Path Algorithms
© 2010 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
CSC 213 – Large Scale Programming. Minimum Spanning Tree (MST)  Spanning subgraph  Subgraph w/ all vertices ORD PIT ATL STL DEN DFW DCA
1 Weighted Graphs CSC401 – Analysis of Algorithms Lecture Notes 16 Weighted Graphs Objectives: Introduce weighted graphs Present shortest path problems,
Data Structures and Algorithms1 Data Structures and algorithms (IS ZC361) Weighted Graphs – Shortest path algorithms – MST S.P.Vimal BITS-Pilani
Minimum- Spanning Trees
Graphs Quebec Toronto Montreal Ottawa 449 km 255 km 200 km 545 km Winnipeg 2075 km 2048 km New York 596 km 790 km 709 km.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
© 2010 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 COMP9024: Data Structures and Algorithms Week Twelve: Graphs (II) Hui Wu Session 1, 2014
Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Shortest Paths C B A E D F Shortest Paths
Graphs Part 2.
14 Graph Algorithms Hongfei Yan June 8, 2016.
COMP9024: Data Structures and Algorithms
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Trees
Minimum Spanning Trees
Shortest Path 6/18/2018 4:22 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Shortest Paths C B A E D F Shortest Paths 1
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Chapter 14 Graph Algorithms
Minimum Spanning Tree 11/3/ :04 AM Minimum Spanning Tree
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F
Campus Tour 11/16/2018 3:14 PM Campus Tour Campus Tour
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F Shortest Paths
Chapter 13 Graph Algorithms
Minimum Spanning Tree Section 7.3: Examples {1,2,3,4}
Graphs Part 2.
Graph Algorithms shortest paths, minimum spanning trees, etc.
Campus Tour 2/23/ :26 AM Campus Tour Campus Tour
Minimum Spanning Trees
Shortest Paths.
Minimum Spanning Trees
Weighted Graphs C B A E D F Sequences
Presentation transcript:

Minimum Spanning Trees 12/4/2018 3:52 AM Minimum Spanning Trees 2704 867 BOS 849 PVD ORD 187 740 144 1846 621 JFK 184 1258 802 SFO 1391 BWI 1464 337 1090 DFW 946 LAX 1235 1121 MIA 2342 Minimum Spanning Trees

Minimum Spanning Trees Outline and Reading Minimum Spanning Trees (§7.3) Definitions A crucial fact The Prim-Jarnik Algorithm (§7.3.2) Kruskal's Algorithm (§7.3.1) Baruvka's Algorithm (§7.3.3) Minimum Spanning Trees

Minimum Spanning Trees Spanning subgraph Subgraph of a graph G containing all the vertices of G Spanning tree Spanning subgraph that is itself a (free) tree Minimum spanning tree (MST) Spanning tree of a weighted graph with minimum total edge weight Applications Communications networks Transportation networks ORD 10 1 PIT DEN 6 7 9 3 DCA STL 4 8 5 2 DFW ATL Minimum Spanning Trees

Cycle Property Cycle Property: C C 8 4 2 3 6 7 9 e f Let T be a minimum spanning tree of a weighted graph G Let e be an edge of G that is not in T and C let be the cycle formed by e with T For every edge f of C, weight(f)  weight(e) Proof: By contradiction If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e with f Replacing f with e yields a better spanning tree 8 4 2 3 6 7 9 C e f Minimum Spanning Trees

Partition Property Partition Property: U V 7 f Consider a partition of the vertices of G into subsets U and V Let e be an edge of minimum weight across the partition There is a minimum spanning tree of G containing edge e Proof: Let T be an MST of G If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition By the cycle property, weight(f)  weight(e) Thus, weight(f) = weight(e) We obtain another MST by replacing f with e 4 9 5 2 8 8 3 e 7 Replacing f with e yields another MST U V 7 f 4 9 5 2 8 8 3 e 7 Minimum Spanning Trees

Prim-Jarnik’s Algorithm Similar to Dijkstra’s algorithm (for a connected graph) We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s We store with each vertex v a label d(v) = the smallest weight of an edge connecting v to a vertex in the cloud At each step: We add to the cloud the vertex u outside the cloud with the smallest distance label We update the labels of the vertices adjacent to u Minimum Spanning Trees

Prim-Jarnik’s Algorithm (cont.) A priority queue stores the vertices outside the cloud Key: distance Element: vertex Locator-based methods insert(k,e) returns a locator replaceKey(l,k) changes the key of an item We store three labels with each vertex: Distance Parent edge in MST Locator in priority queue Algorithm PrimJarnikMST(G) Q  new heap-based priority queue s  a vertex of G for all v  G.vertices() if v = s setDistance(v, 0) else setDistance(v, ) setParent(v, ) l  Q.insert(getDistance(v), v) setLocator(v,l) while Q.isEmpty() u  Q.removeMin() for all e  G.incidentEdges(u) z  G.opposite(u,e) r  weight(e) if r < getDistance(z) setDistance(z,r) setParent(z,e) Q.replaceKey(getLocator(z),r) Minimum Spanning Trees

Minimum Spanning Trees Example  7 7 D 7 D 2 2 B 4 B 4 8 9  5 9  5 5 2 F 2 F C C 8 8 3 3 8 8 E E A 7 A 7 7 7 7 7 7 D 2 7 D 2 B 4 B 4 5 9  5 5 9 4 2 F 5 C 2 F 8 C 8 3 8 3 8 E A E 7 7 A 7 7 Minimum Spanning Trees

Minimum Spanning Trees Example (contd.) 7 7 D 2 B 4 9 4 5 5 2 F C 8 3 8 E A 3 7 7 7 D 2 B 4 5 9 4 5 2 F C 8 3 8 E A 3 7 Minimum Spanning Trees

Minimum Spanning Trees Analysis Graph operations Method incidentEdges is called once for each vertex Label operations We set/get the distance, parent and locator labels of vertex z O(deg(z)) times Setting/getting a label takes O(1) time Priority queue operations Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the graph is represented by the adjacency list structure Recall that Sv deg(v) = 2m The running time is O(m log n) since the graph is connected Minimum Spanning Trees

Minimum Spanning Trees Kruskal’s Algorithm A priority queue stores the edges outside the cloud Key: weight Element: edge At the end of the algorithm We are left with one cloud that encompasses the MST A tree T which is our MST Algorithm KruskalMST(G) for each vertex V in G do define a Cloud(v) of  {v} let Q be a priority queue. Insert all edges into Q using their weights as the key T   while T has fewer than n-1 edges do edge e = T.removeMin() Let u, v be the endpoints of e if Cloud(v)  Cloud(u) then Add edge e to T Merge Cloud(v) and Cloud(u) return T Minimum Spanning Trees

Data Structure for Kruskal Algortihm The algorithm maintains a forest of trees An edge is accepted it if connects distinct trees We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations: -find(u): return the set storing u -union(u,v): replace the sets storing u and v with their union Minimum Spanning Trees

Representation of a Partition Each set is stored in a sequence Each element has a reference back to the set operation find(u) takes O(1) time, and returns the set of which u is a member. in operation union(u,v), we move the elements of the smaller set to the sequence of the larger set and update their references the time for operation union(u,v) is min(nu,nv), where nu and nv are the sizes of the sets storing u and v Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times Minimum Spanning Trees

Partition-Based Implementation A partition-based version of Kruskal’s Algorithm performs cloud merges as unions and tests as finds. Algorithm Kruskal(G): Input: A weighted graph G. Output: An MST T for G. Let P be a partition of the vertices of G, where each vertex forms a separate set. Let Q be a priority queue storing the edges of G, sorted by their weights Let T be an initially-empty tree while Q is not empty do (u,v)  Q.removeMinElement() if P.find(u) != P.find(v) then Add (u,v) to T P.union(u,v) return T Running time: O((n+m)log n) Minimum Spanning Trees

Minimum Spanning Trees Kruskal Example 2704 BOS 867 849 PVD ORD 187 740 144 1846 JFK 621 184 1258 802 SFO BWI 1391 1464 337 1090 DFW 946 LAX 1235 1121 MIA 2342 Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example JFK BOS MIA ORD LAX DFW SFO BWI PVD 867 2704 187 1258 849 740 144 1846 621 184 802 1391 1464 337 1090 946 1235 1121 2342 Minimum Spanning Trees

Minimum Spanning Trees Baruvka’s Algorithm Like Kruskal’s Algorithm, Baruvka’s algorithm grows many “clouds” at once. Each iteration of the while-loop halves the number of connected compontents in T. The running time is O(m log n). Algorithm BaruvkaMST(G) T  V {just the vertices of G} while T has fewer than n-1 edges do for each connected component C in T do Let edge e be the smallest-weight edge from C to another component in T. if e is not already in T then Add edge e to T return T Minimum Spanning Trees

Minimum Spanning Trees Baruvka Example Minimum Spanning Trees

Minimum Spanning Trees Example Minimum Spanning Trees

Minimum Spanning Trees Example JFK BOS MIA ORD LAX DFW SFO BWI PVD 867 2704 187 1258 849 740 144 1846 621 184 802 1391 1464 337 1090 946 1235 1121 2342 Minimum Spanning Trees