A Radical Cascade Enabling Collective Syntheses of Natural Products

Slides:



Advertisements
Similar presentations
17.2 How Aldehydes and Ketones React (Part I) 1 ++ R = alkyl or aryl (C) Y = alkyl, aryl or H (class II) (No leaving group) -- Electron rich (Lewis.
Advertisements

ALCOHOLS Dr. Sheppard CHEM 2412 Summer 2015 Klein (2 nd ed.) sections 13.1, 13.2, 13.3, 13.5, 13.4, 13.6, 13.7, 13.10, 13.9,
Chapter 15 Alcohols, Diols, and Thiols Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Organic Synthesis Michael Smith Chapter 12 Carey & Sundberg Chapter 8.
Date:
Organic Chemistry Second Edition Chapter 13 David Klein
Supplemental Figure 1. Figure legend. Synthesis of 5-Amino-2-hydroxy-benzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3-yl)-phenyl ester (5-ASA-ADT, 4). Reaction.
Anion Binding in Solution: Beyond the Electrostatic Regime
Volume 22, Issue 3, Pages (March 2015)
A Singlet Phosphinidene Stable at Room Temperature
Jung, Michael E. ; Im, G-Yoon J
“Seeing” the Invisibles at the Single-Molecule Level
Foundations for Directed Alkaloid Biosynthesis
Volume 3, Issue 3, Pages (September 2017)
Synthesis and Solution Processing of a Hydrogen-Bonded Ladder Polymer
Volume 3, Issue 2, Pages (August 2017)
Volume 4, Issue 7, Pages (July 2018)
Volume 20, Issue 6, Pages (June 2013)
Volume 3, Issue 2, Pages (August 2017)
Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH
Kenneth Virgel N. Esguerra, Wenbo Xu, Jean-Philip Lumb  Chem 
Synthesis of Acrylic Acid Derivatives from CO2 and Ethylene
Volume 21, Issue 11, Pages (November 2014)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Nobuaki Matsumori, Toshiyuki Yamaguchi, Yoshiko Maeta, Michio Murata 
Lotta Turunen, Ulrike Warzok, Christoph A. Schalley, Kari Rissanen 
Volume 20, Issue 3, Pages (March 2013)
CARBOXYLIC ACID DERIVATIVES.
Jianchun Wang, Lei Zhang, Zhe Dong, Guangbin Dong  Chem 
Volume 1, Issue 2, Pages (August 2016)
Volume 1, Issue 3, Pages (September 2016)
Volume 3, Issue 5, Pages (November 2017)
KC Nicolaou, JA Pfefferkorn, F Schuler, AJ Roecker, G-Q Cao, JE Casida 
Volume 8, Pages (October 2018)
A 15-step synthesis of (+)-ryanodol
Volume 3, Issue 6, Pages (December 2017)
Redesign of a Dioxygenase in Morphine Biosynthesis
Rylene Ribbons with Unusual Diradical Character
Volume 21, Issue 5, Pages (May 2014)
by Steven M. Banik, Jonathan William Medley, and Eric N. Jacobsen
Yuping Wang, J. Fraser Stoddart  Chem 
Merging Photoredox PCET with Ni-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated Olefins  Shuai Zheng, Álvaro Gutiérrez-Bonet, Gary A.
Volume 15, Issue 7, Pages (July 2008)
by Zachary G. Brill, Huck K. Grover, and Thomas J. Maimone
Volume 3, Issue 2, Pages (February 2019)
Igor V. Alabugin, Trevor Harris  Chem 
Aromatics from Syngas: CO Taking Control
Foundations for Directed Alkaloid Biosynthesis
Volume 17, Issue 11, Pages (November 2010)
Volume 4, Issue 4, Pages (April 2018)
Volume 14, Issue 4, Pages (April 2007)
Mathieu Denis, James E.M. Lewis, Florian Modicom, Stephen M. Goldup
Rapid Dehydroxytrifluoromethoxylation of Alcohols
Volume 11, Issue 9, Pages (September 2004)
A Radical Mechanism for Frustrated Lewis Pair Reactivity
Volume 12, Issue 6, Pages (June 2005)
Aza-Tryptamine Substrates in Monoterpene Indole Alkaloid Biosynthesis
Rylene Ribbons with Unusual Diradical Character
Volume 3, Issue 6, Pages (December 2017)
The Dynamic Nature of Phosphorus
Xiang-Yu Chen, Dieter Enders  Chem 
Volume 3, Issue 1, Pages 8-10 (July 2017)
Volume 4, Issue 3, Pages (March 2018)
Volume 2, Issue 6, Pages (June 2017)
Polynuclear Clusters: Bridging between Metal Ion and Metal Oxide
Volume 2, Issue 3, Pages (March 2017)
Volume 2, Issue 5, Pages (May 2017)
Room-Temperature Conversion of Methane Becomes True
Volume 3, Issue 1, Pages (July 2017)
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

A Radical Cascade Enabling Collective Syntheses of Natural Products Xiaobei Wang, Dongliang Xia, Wenfang Qin, Ruijie Zhou, Xiaohan Zhou, Qilong Zhou, Wentao Liu, Xiang Dai, Huijing Wang, Shuqing Wang, Ling Tan, Dan Zhang, Hao Song, Xiao-Yu Liu, Yong Qin  Chem  Volume 2, Issue 6, Pages 803-816 (June 2017) DOI: 10.1016/j.chempr.2017.04.007 Copyright © 2017 Elsevier Inc. Terms and Conditions

Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Background and Synthetic Plan (A) Proposed biosynthetic pathway and structural categorization of monoterpenoid indole alkaloids. (B) Envisioned photocatalytic radical cascade to generate aspidosperma-type intermediate 3 (path a), tetrahydrocarbolinone 4, and corynanthe-type intermediate 5 (path b) for the syntheses of monoterpenoid indole alkaloids. Abbreviations: D-A reaction, Diels-Alder reaction; STR1, strictosidine synthase; SG, strictosidine glucosidase. Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 Preparation of Aspidosperma-Type Derivatives 3 Optimal conditions: 0.5 mol % Ir(dtbbpy) (ppy)2PF6, 5 equiv KHCO3, degassed THF, 5 W blue LEDs, 35°C, Ar. The dr values were determined by LC-MS analysis. The relative carbon configurations at the C-ring and D-ring were determined by nuclear Overhauser effect experiments. 3a and 3l: the absolute configuration was determined by X-ray crystallography of the detosylated intermediates (see the Supplemental Information). 3a–3m: the dr values or E/Z ratios were determined by LC-MS analysis. A dr > 50:1 indicated that other diastereoisomers were not detected in the LC-MS experiments. 3a: the yield in parentheses was obtained with 50% aqueous THF as the solvent. 3n: the dr value was determined by 1H NMR analysis. Ir(dtbbpy) (ppy)2PF6, (4,4′-di-tert-butyl-2,2′-bipyridine)bis[(2-pyridinyl)phenyl]iridium(III) hexafluorophosphate. See also Figures S8–S156. Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 Preparation of Tetrahydrocarbolinones 4 and Corynanthe-Type Derivatives 5 (A) Optimal conditions: 0.5 mol % Ir(dtbbpy) (ppy)2PF6, 5 equiv KHCO3, degassed THF, 5 W blue LEDs, 35°C, Ar. For the syntheses of 4a–4h, 4m, and 4n, 1.1–2.5 equiv Michael acceptors 6, 8, and 9 were used. For the syntheses of 4i–4l, 4 equiv Michael acceptor 7 was used. 4b: the yield in parentheses was obtained with 50% aqueous THF as the solvent. (B) 7: 2.5–5 equiv was used. 5a–5i: the dr values of 5 in (B) were determined by LC-MS analysis. The relative configurations of 5a, 5b, and 5d–5i were determined by comparison of their NMR spectra with that of 5c; the absolute configuration was confirmed by conversion of 5c to 28a and 29a (see Scheme 2 and the Supplemental Information for details). 5h: dioxane was used as the solvent. See also Figures S157–S283. Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Scheme 1 Total Syntheses of the Eburnamine-Vincamine Family Alkaloids (A) Reagents and conditions: (a) 1 mol % Ir(dtbbpy) (ppy)2PF6, 5 equiv KHCO3, degassed acetonitrile, 30 W blue LEDs, 35°C, Ar; (b) p-TsOH, CH2Cl2, 1,3-propanediol, room temperature (RT); (c) sodium naphthalenide, THF, −78°C; (d) benzeneseleninic anhydride, THF, 40°C; (e) BH3·SMe2, THF, 0°C to RT; (f) trifluoroacetic acid (TFA), CH2Cl2, RT; (g) 0.5 M HCl (aq), RT; (h) pyridinium dichromate (PDC), CH2Cl2, RT. (B) Reagents and conditions: (a) KOtBu, THF, Ph3P+CH3Br−, 0°C to RT; (b) sodium naphthalenide, THF, −78°C; (c) benzeneseleninic anhydride, THF, 40°C; (d) BH3·SMe2, THF, 0°C to RT, then NaBO3; (e) tetrapropylammonium perruthenate, N-methyl morpholine-N-oxide, CH2Cl2, 4 Å molecular sieves, RT, then PDC, CH2Cl2, RT; (f) sodium bis(trimethylsilyl)amide (NaHMDS), tBuONO, PhMe, 50°C; (g) TsOH, paraformaldehyde, AcOH, 100°C; then KOtBu, MeOH, RT. (C) Reagents and conditions: (a) NaH, dimethylformamide, MeI, 0°C to RT; (b) 6 M HCl (aq)/THF (1:1 v/v), RT; (c) hexamethyl phosphoryl triamide, SmI2, THF, reflux; (d) NaH, CS2, THF; then MeI, 0°C to RT; (e) azodiisobutyronitrile (AIBN), Bu3SnH, PhMe, 80°C; (f) 15 mol % tris(triphenylphosphine)rhodium(I) carbonyl hydride (Rh(H)(CO)(PPh3)3), PhSiH3, THF, RT. See also Figures S284–S345. Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Scheme 2 Total Syntheses of the Yohimbine Family Alkaloids (A) Reagents and conditions: (a) 0.5 mol % Ir(dtbbpy) (ppy)2PF6, 5 equiv KHCO3, THF, 30 W blue LEDs, 25°C; (b) p-TsOH, PhMe, 60°C; (c) Pd(OH)2, H2, EtOAc, RT; (d) NaBH4, MeOH, RT; (e) CS2, NaH, Mel, THF, 0°C; then AIBN, Bu3SnH, PhMe, 80°C; (f) Mg, MeOH, RT; (g) benzeneseleninic anhydride, THF, 40°C; (h) 15 mol % Rh(H)(CO)(PPh3)3, PhSiH3, THF, RT. (B) Reagents and conditions: (a) tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) (Mn(dpm)3), PhSiH3, O2, iPrOH/CH2Cl2 (1:4 v/v), RT; then silica gel; (b) 1,1′-thiocarbonyldiimidazole, 4-dimethylaminopyridine, 1,2-dichloroethane (DCE), RT; then AIBN, Bu3SnH, DCE, reflux; (c) Mg, MeOH, RT; (d) benzeneseleninic anhydride, THF, 40°C; (e) 15 mol % Rh(H)(CO)(PPh3)3, PhSiH3, THF, RT; (f) dicyclohexylcarbodiimide, Cl2CHCOOH, DMSO, 35°C; (g) BnBr, Ag2O, PhMe, 45°C; (h) Me3S+I−, KOtBu, DMSO, RT; (i) Zn, Cp2TiCl2, 1,4-cyclohexadiene (1,4-CHD), THF, RT; (j) 2,2,6,6-tetramethyl-1-piperidyloxy (TEMPO), PhI(OAc)2, MeCN/H2O (1:1 v/v); then NaClO2, NaH2PO4, 2-methyl-2-butene, tBuOH/H2O (1:1 v/v), RT; then trimethylsilyldiazomethane (TMSCHN2), PhMe/MeOH (5:1 v/v), RT; (k) Mg, MeOH, RT; (l) benzeneseleninic anhydride, THF, 45°C; (m) BBr3, CH2Cl2, −78°C; (n) Ac2O, DMSO, RT; (o) lithium triisobutylhydroborate, THF, −78°C, 43/41 6:1. (C) Reagents and conditions: (a) Mn(dpm)3, PhSiH3, O2, iPrOH/CH2Cl2 (1:4 v/v), RT; (b) tert-butyldimethylsilyl chloride, imidazole, CH2Cl2, RT; (c) Me3S+I−, nBuLi, THF, 0°C; (d) Zn, Cp2TiCl2, 1,4-CHD, THF, 50°C; (e) TEMPO, PhI(OAc)2, MeCN/H2O (1:1 v/v); then NaClO2, NaH2PO4, 2-methyl-2-butene, tBuOH/H2O (1:1 v/v), RT; then TMSCHN2, PhMe/MeOH (5:1 v/v), RT; (f) Mg, MeOH, RT; (g) benzeneseleninic anhydride, THF, 40°C; (h) 15 mol % Rh(H)(CO)(PPh3)3, PhSiH3, THF, RT; (i) 5 M HCl/THF (1:3 v/v), 30°C; (j) pyridine hydrofluoride, THF, 40°C; (k) 1 M MeONa in MeOH, 30°C. See also Figures S346–S467. Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Scheme 3 Total Syntheses of the Corynanthe and Heteroyohimbine Family Alkaloids (A) Reagents and conditions: (a) 1 mol % Ir(dtbbpy) (ppy)2PF6, 5 equiv KHCO3, THF, 30 W blue LEDs, 35°C, Ar; (b) LiBH4, THF, 0°C to RT; (c) methanesulfonyl chloride (MsCl), Et3N, CH2Cl2, RT; (d) trimethylsilyl cyanide (TMSCN), tetra-n-butylammonium fluoride (TBAF), THF, reflux; (e) HCl (g), MeOH, 0°C to RT; (f) Mg, MeOH, RT; (g) benzeneseleninic anhydride, THF, 40°C; (h) LiAlH4, PhMe, 0°C to RT; (i) 5 mol % Rh(H)(CO)(PPh3)3, PhSiH3, THF, RT; (j) lithium diisopropylamide, HCO2Me, THF, −78°C to RT; (k) AcOH, NaBH4, MeOH, 0°C. (B) Reagents and conditions: (a) 0.5 mol % Ir(dtbbpy)(ppy)2PF6, 5 equiv KHCO3, acetonitrile, 15 W blue LEDs, Ar, 37°C; (b) Mg, MeOH, RT; (c) benzeneseleninic anhydride, THF, 40°C; (d) LiAlH4, THF, −30°C; (e) MsCl, Et3N, CH2Cl2, RT; (f) TMSCN, TBAF, THF, reflux; (g) HCl (g), MeOH, 0°C–60°C; (h) 7 mol % Rh(H)(CO)(PPh3)3, PhSiH3, THF, RT; (i) LiAlH4, THF, 0°C to RT; (j) H2, 10% PtO2, MeOH, RT. (C) Reagents and conditions: (a) Pd(OAc)2, HClO4, 1,4-benzoquinone, MeCN/H2O (7:1 v/v), RT; (b) 7 mol % Rh(H)(CO)(PPh3)3, PhSiH3, THF, RT; (c) NaBH4, MeOH, −30°C; (d) NaHMDS or LiHMDS, NCCO2Me, THF, −78°C; (e) diisobutylaluminum hydride or NaBH4; (f) p-TsOH, CH2Cl2, reflux; then K2CO3, MeOH, RT; (g) Ph3P, diethyl azodicarboxylate, p-nitrobenzoic acid, THF, 0°C–30°C; then Cs2CO3, MeOH, RT. See also Figures S468–S640. Chem 2017 2, 803-816DOI: (10.1016/j.chempr.2017.04.007) Copyright © 2017 Elsevier Inc. Terms and Conditions