Stéphane Bailleux stephane.bailleux@univ-lille1.fr Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

DENNIS J. CLOUTHIER, ROBERT GRIMMINGER, and BING JIN, Department of Chemistry, University.
In-situ Photolysis of Methyl Iodide in Solid Para-hydrogen and Solid Ortho-deuterium Yuki Miyamoto 1, Mizuho Fushitani 2, Hiromichi Hoshina 3, and Takamasa.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
1 N. NISHIMIYA and T. YUKIYA Tokyo Polytechnic University, Kanagawa, JAPAN. HIGH – RESOLUTION LASER SPECTROSCOPY OF THE A 3 Π 1 ← X 1 Σ + SYSTEM OF ICl.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
66th OSU International symposium on molecular spectroscopy
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Breaking the Symmetry in Methyl Radical: High resolution IR spectroscopy of CH 2 D Melanie Roberts Department of Chemistry and Biochemistry, JILA University.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
ROTATIONAL ENERGIES AND SPECTRA: . LINEAR MOLECULE SPECTRA:  Employing the last equation twice  ΔE= E J+1 – E J = hB(J+1)(J=2) – hBJ(J+1)  Or: ΔE.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
Anomalous CH Stretch Intensity Effects in Halomethyl Radicals: “Charge-Sloshing” vs. Bond- Dipole Contributions to IR Transition Moments E.S. Whitney,
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
(Toho Univ. a, Univ. Toyama b ) Chiho Fujita a, Hiroyuki Ozeki a, and Kaori Kobayashi b 2015 Jun 22ndInternational Symposium on Molecular Spectroscopy,
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
Juliane Heitkämper, John C Mullaney, Nick Walker
Department of Chemistry
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Stéphane Bailleux University of Lille
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
International Symposium on Molecular Spectroscopy
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
60th International Symposium on Molecular Spectroscopy
Jacob T. Stewart and Bradley M
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
Theoretical Prediction of the Rotational Constants for
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
Bob Grimminger and Dennis Clouthier
Microwave spectra of 1- and 2-bromobutane
Methylstyrenes – Microwave Spectroscopy
The Three-dimensional Potential Energy
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Fourier transform microwave spectra of n-butanol and isobutanol
INFRARED SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
The Pure Rotational Spectrum of FeO+ (X6S+)
Fourier Transform Infrared Spectral
Methylindoles – Microwave Spectroscopy
(Toho Univ.a, Univ. Toyamab)
Bond-Breaking Isomerization in HCN  HNC
John Mullaney Newcastle University
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Stéphane Bailleux stephane.bailleux@univ-lille1.fr Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation Stéphane Bailleux stephane.bailleux@univ-lille1.fr June 26, 2015 – 70th ISMS Meeting

Content Introduction Results Prospects previous works atmospheric implication of INO Results computations observations Prospects

Contributors Lille University acknowledgements Toho University (MMW) Measurement Computations Toho University (MMW) S. Aiba H. Ozeki Lille University D. Duflot acknowledgements French National Research Agency

Spectroscopy of XNOy (y = 1 – 3) X = { F, Cl, Br } : extensive studies : theoretical and experimental (uv/vis ; I.R. ; mmw) for the whole family (y = 1 – 3) X = I matrix isolated INO (1977) and INO2 (1979) : IR spectra gas-phase INO, INO2 and INO3 : low-resolution (1 cm-1) FTIR spectra (1991) INO , hi-resolution spectroscopy : this work

Atmospheric iodine photochemistry Aerosol I INO2 I2, CH2I2, CH2IX, CH3I, … NO, XO IONO2 O3 loss Chem. Rev. 112 (2012), p. 1773 – Saiz-Lopez et al. : Atmospheric chemistry of iodine

Predicted rotational spectrum Quantum Chemistry Calculation MOLPRO 2012.1 CCSD(T) – F12b / cc–PVQZ–(PP) optimized structure (120 points grid) Geometry Dipole moments (D) : µa = 1.60 µb = 0.04 Cs symmetry k = -0.998 IN 2.356 Å NO 1.142 Å ∠INO 115.6 °

Computed rotational constants CCSD(T) / cc–PVQZ–(PP) Ae (MHz) 84030.8 Be (MHz) 2848.5 Ce (MHz) 2755.1 DJ (kHz) 1.67 DJK (kHz) -46.21 DK (kHz) 5 151 d1 (Hz) -70 d2 (Hz) -1.7

Hyperfine (quadrupolar) structure ⇒ 18 hyperfine sublevels I I = 5/2 Parameter (MHz) ANO / B3LYP Iodine coupling 3/2 caa -2160.025 1/4 (cbb - ccc ) 122.669 |cab| 615.917 Nitrogen coupling 0.461 -2.365 1.371 cij (a = N, I) : cij (a) = eQa /h qij(a) HeQq(a) = - ⅙ Qa : ∇Ea

Millimeter-wave spectrometer (Toho) Precursors : I2 + NO

J = 77  76 and 78  77 : observed Ka

Example : JKa,Kc = 751,75  741,74

frequency domain (/GHz) Results assignement 68 µa-type Ja 74 – 78 Ka 00 – 10 frequency domain (/GHz) 400 – 440 number of parameters 10

Rotational constants observed rms(fit) = 50 kHz A0aa 81797.4 (49)4444 CCSD(T) – F12b cc–PVQZ–(PP) A0aa 81797.4 (49)4444 84030.84 B0bb 2797.5464 (51) 2848.5 C0cc 12705.6691 (51) 2755.1 DJD 1.86305 (15) 001.67 DJKD -53.317 (47) -46.21 DKD 5890 (50)00000 5151000 d1DD -77.70(20)0 -7000 d2DD -1.915 (24) 0-1.7 HJHH HJKH 0000.0701 (42) HKJH -34.247 (80) HKHH (MHz) (kHz) (Hz) (Hz) rms(fit) = 50 kHz

Bond properties ∠XNO FNO ClNO BrNO INO re r0 rz X – N / Å 1.512 1.975 2.141 2.356 N – O / Å 1.136 1.139 1.147 1.142 ∠XNO 110°5’ 113°20’ 114°29’ 115°36’ contribution from ionic structures X-NO+ in nitrosyl halides: from 10% (FNO) to 40% (ClNOINO) NO+ NO r / Å 1.062 1.150

Concluding remarks First high-resolution rotational spectrum of INO will prompt vibrational spectroscopic studies give the potential for atmospheric monitoring hyperfine structure : remains to be observed Unidentified lines: IONO ? INOx trace species in the atmosphere: gaps in our understanding of I / NOx interaction (gas and aerosols) impact on ozone levels

INO vibrational frequencies Mode (cm-1) CCSD(T) / cc–PVQZ–(PP) FTIR gas-phase Ar matrix n1 (NO stretch) 1781.4 1785 1809 n2 (bend)00000 493.6 470 n3 (IN stretch)0 233.4 216

Source of atmospheric iodine S. Archer et al. J. Geophys. Res. 2006 CH2 ICl 44% CH2 I2 22% CH3 I 23% CH2 IBr : 5% C2H5 I : 6% di-halogenated species are much more photolabile

Computed hyperfine constants (MHz) observed CCSD(T) – F12b cc–PVQZ–(PP) Iodine caa -1440.0200 cbb 965.35 |cab| 615.92 Nitrogen 00.307 -4.884 01.371

Quadrupolar tensors of CH2 I 79Br cxx / MHz –289.7496 (49) 981.0133 (39) cyy / MHz –308.7330 (17) 1038.9290 (18) czz / MHz 598.4826 (49) –2019.9423 (39) h 0.03170 0.0287 qza / °Hz 35.13000 29.88000