Selected Topics: External Sorting, Join Algorithms, …

Slides:



Advertisements
Similar presentations
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
Advertisements

Equality Join R X R.A=S.B S : : Relation R M PagesN Pages Relation S Pr records per page Ps records per page.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
External Sorting “There it was, hidden in alphabetical order.” Rita Holt R&G Chapter 13.
External Sorting CS634 Lecture 10, Mar 5, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 11 External Sorting.
External Sorting R & G Chapter 13 One of the advantages of being
External Sorting R & G Chapter 11 One of the advantages of being disorderly is that one is constantly making exciting discoveries. A. A. Milne.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
External Sorting 198:541. Why Sort?  A classic problem in computer science!  Data requested in sorted order e.g., find students in increasing gpa order.
1 External Sorting for Query Processing Yanlei Diao UMass Amherst Feb 27, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
External Sorting Chapter 13.. Why Sort? A classic problem in computer science! Data requested in sorted order  e.g., find students in increasing gpa.
Query Processing 2: Sorting & Joins
Sorting.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13: Ramakrishnan & Gherke and Chapter 2.3: Garcia-Molina et al.
1 External Sorting. 2 Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing gpa order.
ZA classic problem in computer science! zData requested in sorted order ye.g., find students in increasing cap order zSorting is used in many applications.
Introduction to Database Systems1 External Sorting Query Processing: Topic 0.
Relational Operator Evaluation. overview Projection Two steps –Remove unwanted attributes –Eliminate any duplicate tuples The expensive part is removing.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapters 13: 13.1—13.5.
CPSC Why do we need Sorting? 2.Complexities of few sorting algorithms ? 3.2-Way Sort 1.2-way external merge sort 2.Cost associated with external.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
External Sorting. Why Sort? A classic problem in computer science! Data requested in sorted order –e.g., find students in increasing gpa order Sorting.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 14, Part A (Joins)
External Sorting Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
CS 405G: Introduction to Database Systems Instructor: Jinze Liu Fall 2007.
Diskusi-08 Jelaskan dan berikan contoh penggunaan theta join, equijoin, natural join, outer join, dan semijoin The slides for this text are organized into.
Diskusi-5 Sebutkan perangkat (tools) yang berpotensi mendukung kebutuhan tugas-tugas manajerial (management work) Jelaskan enam karakteristik informasi.
Database Systems (資料庫系統)
Tree-Structured Indexes
Storage and Indexes Chapter 8 & 9
Diskusi-1 Bacalah materi chapter-01, lalu buatlah ringkasan yang berisi tentang : Definisi EUIS Siapa end user Dampak euis pada lingkungan kerja Perencanaan.
External Sorting Chapter 13
Latihan Answer the following questions using the relational schema from the Exercises at the end of Chapter 3: Create the Hotel table using the integrity.
External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and
Diskusi-16 Buatlah ringkasan tentang pertimbangan dalam desain yang ergonomis pada tiga perangkat utama komputer yaitu monitor, keyboard dan mouse (lihat.
Hash-Based Indexes Chapter 11
Latihan Create a separate table with the same structure as the Booking table to hold archive records. Using the INSERT statement, copy the records from.
Tugas-05 a. Sebutkan primary key masing-masing tabel
Introduction to Query Optimization
Evaluation of Relational Operations
File Organizations Chapter 8 “How index-learning turns no student pale
Database Management Systems (CS 564)
Lecture#12: External Sorting (R&G, Ch13)
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
B+-Trees and Static Hashing
File Organizations and Indexing
File Organizations and Indexing
Tree-Structured Indexes
Hash-Based Indexes Chapter 10
External Sorting Chapter 13
B+Trees The slides for this text are organized into chapters. This lecture covers Chapter 9. Chapter 1: Introduction to Database Systems Chapter 2: The.
CS222P: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
Overview of Query Evaluation
CS222: Principles of Data Management Lecture #10 External Sorting
Evaluation of Relational Operations: Other Techniques
External Sorting.
CS222P: Principles of Data Management Lecture #10 External Sorting
Database Systems (資料庫系統)
Chapter 11 Instructor: Xin Zhang
Tree-Structured Indexes
External Sorting Chapter 13
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
File Organizations and Indexing
Presentation transcript:

Selected Topics: External Sorting, Join Algorithms, … Chapters 13—15: 13.1—13.5, 14.4, … The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter 2: The Entity-Relationship Model Chapter 3: The Relational Model Chapter 4 (Part A): Relational Algebra Chapter 4 (Part B): Relational Calculus Chapter 5: SQL: Queries, Programming, Triggers Chapter 6: Query-by-Example (QBE) Chapter 7: Storing Data: Disks and Files Chapter 8: File Organizations and Indexing Chapter 9: Tree-Structured Indexing Chapter 10: Hash-Based Indexing Chapter 11: External Sorting Chapter 12 (Part A): Evaluation of Relational Operators Chapter 12 (Part B): Evaluation of Relational Operators: Other Techniques Chapter 13: Introduction to Query Optimization Chapter 14: A Typical Relational Optimizer Chapter 15: Schema Refinement and Normal Forms Chapter 16 (Part A): Physical Database Design Chapter 16 (Part B): Database Tuning Chapter 17: Security Chapter 18: Transaction Management Overview Chapter 19: Concurrency Control Chapter 20: Crash Recovery Chapter 21: Parallel and Distributed Databases Chapter 22: Internet Databases Chapter 23: Decision Support Chapter 24: Data Mining Chapter 25: Object-Database Systems Chapter 26: Spatial Data Management Chapter 27: Deductive Databases Chapter 28: Additional Topics 1

Why Sort? A classic problem in computer science (See Knuth, v.3)! Data requested in sorted order e.g., find students in increasing gpa order Sorting is first step in bulk loading B+ tree index. Sorting useful for eliminating duplicate copies in a collection of records (Why?) Sort-merge join algorithm involves sorting. Problem: sort 1Gb of data with 1Mb of RAM. why not virtual memory? 4

2-Way Merge Sort: Requires 3 Buffers Pass 1: Read a page, sort it (in memory), write it. only one buffer page is used Pass 2, 3, …, etc.: three buffer pages used. INPUT 1 OUTPUT INPUT 2 Main memory buffers Disk Disk 5

2-Way Merge Sort: Algorithm proc two-way_extsort(file) // Given a file on disk, sort it using 3 buffer pages //Pass 0: produce 1-page runs Read each page of file into memory, sort it, and write it out. //Merge pairs of runs to produce longer runs until 1 run is left While # of runs at end of previous pass > 1 do: //Process passes i=1,2,… While there are runs to be merged from previous pass do: Pick next 2 runs from previous pass. Reach read each run into an input buffer, 1 page at a time. Merge the runs and write result to the output buffer by forcing output buffer to disk one page at a time. endproc 4

Two-Way External Merge Sort Each pass we read + write each page in file => 2N I/O’s per pass. N pages in the file => the number of passes So total cost is: Idea: Divide and conquer: sort subfiles and merge Input file contains 7 pages; dark pages shows what would happen with 8 pages. 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file PASS 0 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs PASS 1 2,3 4,7 1,3 2-page runs 4,6 8,9 5,6 2 PASS 2 2,3 4,4 1,2 4-page runs 6,7 3,5 8,9 6 PASS 3 1,2 2,3 3,4 8-page runs 4,5 6,6 7,8 9 6

General External Merge Sort More than 3 buffer pages. How can we utilize them? To sort a file with N pages using B buffer pages: Pass 0: use B buffer pages. Produce sorted runs of B pages each. Pass 2, …, etc.: merge B-1 runs. INPUT 1 . . . INPUT 2 . . . . . . OUTPUT INPUT B-1 Disk Disk B Main memory buffers 7

General External Merge Sort: Algorithm proc extsort(file) // Given a file on disk, sort it using B buffer pages //Pass 0: produce B-pages runs Read B pages of file into memory, sort them, and write them out. //Merge B-1 runs to produce longer runs until 1 run is left While # of runs at end of previous pass > 1 do: //Process passes i=1,2,… While there are runs to be merged from previous pass do: Pick next B-1 runs from previous pass. Reach read each run into an input buffer, 1 page at a time. Merge the runs and write result to the output buffer by forcing output buffer to disk one page at a time. endproc 4

Cost of External Merge Sort Number of passes: Cost = 2N * (# of passes) E.g., with 5 buffer pages, to sort 108 page file: Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages) Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages) Pass 2: 2 sorted runs, 80 pages and 28 pages Pass 3: Sorted file of 108 pages 8

Number of Passes of External Sort 9

I/O for External Merge Sort … longer runs often means fewer passes! Actually, do I/O a page at a time In fact, read a block of pages sequentially! Suggests we should make each buffer (input/output) be a block of pages. But this will reduce fan-out during merge passes! In practice, most files still sorted in 2-3 passes. Typical DBMSs sort 1M records of size 100 bytes in 15 minutes

Number of Passes of Optimized Sort Block size = 32, initial pass produces runs of size 2B. 13

Double Buffering To reduce wait time for I/O request to complete, can prefetch into `shadow block’. Potentially, more passes; in practice, most files still sorted in 2-3 passes. INPUT 1 INPUT 1' INPUT 2 OUTPUT INPUT 2' OUTPUT' b block size Disk INPUT k Disk INPUT k' B main memory buffers, k-way merge

Using B+ Trees for Sorting Scenario: Table to be sorted has B+ tree index on sorting column(s). Idea: Can retrieve records in order by traversing leaf pages. Is this a good idea? Cases to consider: B+ tree is clustered Good idea! B+ tree is not clustered Could be a very bad idea! 15

Clustered B+ Tree Used for Sorting Cost: root to the left-most leaf, then retrieve all leaf pages (Alternative 1) If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once. Index (Directs search) Data Entries ("Sequence set") Data Records Always better than external sorting! 16

Unclustered B+ Tree Used for Sorting Alternative (2) for data entries; each data entry contains rid of a data record. In general, one I/O per data record! Index (Directs search) Data Entries ("Sequence set") Data Records 17

Hash Join: Idea Two phases: Partitioning phase, and probing phase Partition both relations R and S using same hash function h: R-tuples in partition i can join only with S-tuples in partition i: Assume we have B buffer pages: 1 for input and 1 for output. # of partitions is k. # of buffer pages used for partitions is B-2. Hash R and S over the join columns i and j. Read in a partition Ri of R, then hash it using a hash function h2 (different than h). Scan partition Si of S to search for matching tuples in Ri (using h2 for probing the Ri hash table). 19

Hash Join: Algorithm // Given relations R and S, compute their join over column Ri and Sj. // Partition R into k partitions foreach tuple r of R do: read r and add it to buffer page h(ri); // flush page progressively as it fills // Partition S into k partitions foreach tuple s of S do: read s and add it to buffer page h(sj); // flush page progressively as it fills //Probing phase for l=1, …, k do: //Build in-memory hash table for Rl, using h2 foreach tuple r of Rl read r and insert it into hash table using h2(ri); // Scan tuples of Sl and probe for matching Rl-tuples foreach tuple s of Sl read s and probe Rl-table h2(sj); for matching R-tuple r, output <r,s>; clear hash table to prepare for next partition; 4

Summary External sorting is important; DBMS may dedicate part of buffer pool for sorting! External merge sort minimizes disk I/O cost: Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs. # of runs merged at a time depends on B, and block size. Larger block size => smaller # runs merged. Clustered B+ tree is good for sorting; unclustered tree is usually very bad. Join algorithms are crucial in practice. The hash join is largely supported by real systems. 19