INFN Sezione di Catania Hyperonic PNS’s in the Brueckner theory F.Burgio INFN Sezione di Catania with H.-J. Schulze (INFN CT), A. Li ( Xiamen Univ., China) & N. Yasutake (Tokyo Univ., Japan) EoS in Brueckner-Hartree-Fock theory at finite temperature. Hot hyperons. Effects of the nucleon-hyperon interaction Composition of PNS matter Structure properties of PNS. MODE-SNR-PWN Workshop in Bordeaux, November 2010
EoS of nuclear matter at finite T (Microscopic approaches) Variational method B. Friedman & V. R. Pandharipande, Nucl. Phys. A361, 502 (1981) BHF A. Lejeune et al., NP A453, 189 (1986) M. Baldo & L. Ferreira, PRC 59, 682 (1999) Van der Waals behavior. Liquid-gas phase transition with Tc~18-20 MeV. Chiral Perturbation Theory S.Fritsch, N.Kaiser, W.Weise, PLB 545, 73 (2002) B. Ter Haar & R. Malfliet , Phys. Rep. 149, 207 (1987) DBHF H.Huber, F.Weber, M.K.Weigel , PRC 57, 3484,(1998)
Expanding the arctan function (up to the first term ) : Bloch & De Dominicis NP 10, 509 (1959) Brueckner-Hartree-Fock theory at finite T k2/2m+U(k) Grand-canonical potential density ω Expanding the arctan function (up to the first term ) :
Argonne v18 as bare nucleon-nucleon interaction Frozen Correlations Approximation (FCA) : U(k) independent of T Equation of state : Argonne v18 as bare nucleon-nucleon interaction Nucleonic three-body forces. Urbana IX model. (…practically an effective two-body force …) Nijmegen soft-core nucleon-hyperon interaction NSC89 No available hyperon-hyperon scattering data !
104 BHF calculations in the (ρn, ρp, ρΣ, ρΛ, T )-space Functional forms easy to implement numerically Example : the nucleonic contribution β : asymmetry parameter, t = T/100
Composition (beta-equilibrium + charge cons. + lepton number cons.) Hot ν -free matter Hot ν-trapped matter N,l N, free Y,l N, interacting Y,l N, interacting Y,l Onset densities shifted by the NY interaction Absence of thresholds at finite entropy. Stellar core mainly populated by N + 40% hyp. More symmetric matter. Hyperon onset shifted by ν trapping. Strong Σ suppression. Smaller hyperon fraction , about 20%.
PNS structure Equation of state Softening in purely N matter Stiffening in hyperon matter Large increase of P due to NY interaction Slight thermal effects, trapping more important PNS structure
2) Hadron-Quark phase transition Check of different microscopic TBF’s Check of a different parametrization of NY interaction Concluding remarks 1) Repulsive YY interaction (J-PARC data) 2) Hadron-Quark phase transition
COMPSTAR 2011 School & Workshop “Gravitational waves and Electromagnetic Radiation from Compact Stars” Catania, May 3-12, 2011