Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking.

Slides:



Advertisements
Similar presentations
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Advertisements

Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3  E.G. Lima, M.Phil., M.S., L. Bian,
Association of knee and ankle osteoarthritis with physical performance
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
B. Mohanraj, G.R. Meloni, R.L. Mauck, G.R. Dodge 
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels  N.
A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair  M.B. Schmidt, Ph.D.,
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion 
Proteoglycan synthesis in bovine articular cartilage explants exposed to different low- frequency low-energy pulsed electromagnetic fields  M. De Mattei,
Roles for the interleukin-4 receptor and associated JAK/STAT proteins in human articular chondrocyte mechanotransduction  S.J. Millward-Sadler, Ph.D.,
The effects of dynamic viscosity on cartilage mechanics
M. E. R. van Meegeren, G. Roosendaal, N. W. D. Jansen, M. J. G
C. Sanchez, Ph. D. , O. Gabay, Ph. D. , C. Salvat, B. Sc. , Y. E
Evidence for JNK-dependent up-regulation of proteoglycan synthesis and for activation of JNK1 following cyclical mechanical stimulation in a human chondrocyte.
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
R. Mhanna, E. Öztürk, P. Schlink, M. Zenobi-Wong 
Interleukin-1β and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation 
Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage  S. Grad, M. Loparic, R. Peter, M. Stolz, U.
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma  C.A.M. Huser, M.Sc., M. Peacock, M.E. Davies,
A.W. Palmer, C.G. Wilson, E.J. Baum, M.E. Levenston 
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
J.E. Jeon, K. Schrobback, D.W. Hutmacher, T.J. Klein 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Y. Zhou, L. Resutek, L. Wang, X. Lu  Osteoarthritis and Cartilage 
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
M. Cucchiarini, H. Madry, E.F. Terwilliger 
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
J. Ranstam  Osteoarthritis and Cartilage 
Feasibility of bone density evaluation using plain digital radiography
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
S.D. Waldman, J. Usprech, L.E. Flynn, A.A. Khan 
N. Gómez-Prieto, Á. Vela-Anero, L. Gato-Calvo, C. Ruiz-Romero, R
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
Joint space narrowing and Kellgren–Lawrence progression in knee osteoarthritis: an analytic literature synthesis  P.S. Emrani, B.S., J.N. Katz, M.D.,
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Osteoarthritis and Cartilage
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Dynamic compression counteracts IL-1β-induced release of nitric oxide and PGE2by superficial zone chondrocytes cultured in agarose constructs  T.T Chowdhury,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage  Dr S.D. Waldman, Ph.D.,
Tissue engineering with meniscus cells derived from surgical debris
PTHrP overexpression partially inhibits a mechanical strain-induced arthritic phenotype in chondrocytes  D. Wang, J.M. Taboas, R.S. Tuan  Osteoarthritis.
Tibio-femoral cartilage defects 3–5 years following arthroscopic partial medial meniscectomy  P.M. Mills, Ph.D., Y. Wang, M.Med., Ph.D., F.M. Cicuttini,
R. H. J. Das, M. Sc. , H. Jahr, Ph. D. , J. A. N. Verhaar, M. D. , Ph
A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 
Dynamic compression of single cells
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
Erratum to “Effect of hyaluronic acid (MW 500–730kDa) on proteoglycan and nitric oxide production in human osteoarthritic chondrocyte cultures exposed.
Effect of hyaluronic acid (MW 500–730kDa) on proteoglycan and nitric oxide production in human osteoarthritic chondrocyte cultures exposed to hydrostatic.
Adipose derived stromal cells encapsulation in hydrogel particles: potential application to osteoarthritis  F. Hached, C. Vinatier, P.-G. Pinta, P. Weiss,
Osteoarthritis year in review 2016: mechanics
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
General Information Osteoarthritis and Cartilage
Presentation transcript:

Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities  I. Villanueva, M.Sc., D.S. Hauschulz, B.S., D. Mejic, B.S., S.J. Bryant, Ph.D.  Osteoarthritis and Cartilage  Volume 16, Issue 8, Pages 909-918 (August 2008) DOI: 10.1016/j.joca.2007.12.003 Copyright © 2007 Terms and Conditions

Fig. 1 Custom designed loading apparatus. The loading mechanism consists of a rod-linkage assembly controlled by a stepper motor. The loading chamber contains 24 non-porous platens that are associated with each well of a standard 24-well plate. Osteoarthritis and Cartilage 2008 16, 909-918DOI: (10.1016/j.joca.2007.12.003) Copyright © 2007 Terms and Conditions

Fig. 2 Chondrocytes encapsulated in PEG hydrogels with low (a,b), medium (c,d) and high (e,f) crosslinking and cultured as unstrained controls (a,c,e) or subjected to dynamic loading conditions at 1.0Hz for 48h (b,d,f). Live cells=green, dead cells=red. Similar viabilities were observed with static loading and 0.3Hz loading frequencies. The original image dimensions are 225×225μm with a magnification of 100×. Osteoarthritis and Cartilage 2008 16, 909-918DOI: (10.1016/j.joca.2007.12.003) Copyright © 2007 Terms and Conditions

Fig. 3 Total NO production (a), CP (b) and PG synthesis (c) by chondrocytes encapsulated in low, medium and high crosslinked hydrogels subjected to 15% static strains for 48h. Cell response was normalized to the unstrained control as a percent change. Data is given by mean±s.e.m. (n=8); *P<0.05, **P<0.01, ***P<0.001. An asterisk(s) above a column denotes significance from control. Osteoarthritis and Cartilage 2008 16, 909-918DOI: (10.1016/j.joca.2007.12.003) Copyright © 2007 Terms and Conditions

Fig. 4 Total NO production (a), CP (b) and PG synthesis (c) by chondrocytes encapsulated in low, medium and high crosslinked hydrogels subjected to dynamic strains at 0.3Hz (black bars) or 1Hz (gray bars) with 15% amplitude strains for 48h. Cell response was normalized to the unstrained control as a percent change. Data is given by mean±s.e.m. (n=8); *P<0.05, **P<0.01, ***P<0.001. An asterisk(s) above a column denotes significance from control. Osteoarthritis and Cartilage 2008 16, 909-918DOI: (10.1016/j.joca.2007.12.003) Copyright © 2007 Terms and Conditions

Fig. 5 Regression analysis for CP as a function of total NO production (a,c) or PG synthesis as a function of total NO production (b,d) for statically strained PEG constructs (a,b) and dynamically strained PEG constructs (c,d). For panel c and d, regression analysis was performed for 0.3Hz dynamically strained gels (black circles, black line) and for the 1.0Hz dynamically strained gels (gray circles, gray line) and for both frequencies combined (dotted line). Osteoarthritis and Cartilage 2008 16, 909-918DOI: (10.1016/j.joca.2007.12.003) Copyright © 2007 Terms and Conditions