Valence shell electron pair repulsion (VSEPR) model:

Slides:



Advertisements
Similar presentations
Copyright McGraw-Hill Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories.
Advertisements

Molecular shapes Balls and sticks. Learning objectives  Apply VSEPR to predict electronic geometry and shapes of simple molecules.
Chapter 9 Molecular Geometry and Bonding Theories.
Molecular Shapes Chapter 6 Section 3. Molecular Structure It mean the 3-D arrangement of atoms in a molecule Lewis dot structures show how atoms are bonded.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
+ Bonding Part III Unit 5: Bonding Mrs. Callender VS E P R.
Molecular Geometry and VSEPR Theory. VSEPR Theory Valence Shell Electron Pair Repulsion Theory States that electron pairs repel each other and assume.
Molecular Geometry Chapter 6.5.
VSEPR Theory Valence Shell Electron Pair Repulsion.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10.
IIIIII Molecular Geometry Molecular Structure. A. VSEPR Theory  Valence Shell Electron Pair Repulsion Theory  Electron pairs orient themselves so that.
IIIIII I. Lewis Diagrams Molecular Structure. A. Octet Rule n Remember…  Most atoms form bonds in order to have 8 valence electrons.
IIIIII II. Molecular Geometry Ch. 9 – Molecular Structure.
Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. Valence shell electron pair.
Molecular Structure Molecular geometry is the general shape of a molecule or the arrangement of atoms in three dimensional space. Physical and chemical.
Cornell Notes (Section 8.4, especially page 263  Topic: Molecular Geometry  Date: 2/7/2012  VSEPR = Valence Shell Electron Pair Repulsion  Valence.
Ch-8 Part II Bonding: General Concepts. Molecular Geometry and Bond Theory In this chapter we will discuss the geometries of molecules in terms of their.
VSEPR Theory Valence Shell Electron Pair Repulsion.
Molecular Geometry and VSEPR Theory
6.8 Shapes and Polarity of Molecules
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Unit 2.3: Chemical Bonding
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Molecular Geometry VSEPR Theory- “Valence- shell, electron-pair repulsion” states that repulsion between the sets of valence-level electrons surrounding.
VSEPR and Molecular Geometry
Section 2: VSEPR Theory & Molecular Structure and Polarity
Chemical Bonding II: Molecular Geometry
Predicting Shapes of Molecules
TOPIC: Molecular Geometry (Shapes of Molecules) Essential Question: How do you determine the different shapes of molecules?
Timberlake LecturePLUS
VSEPR Pronounced vesper…a vespa for her A vest purrs???
Ch. 6 – Molecular Structure
Molecular Geometry bond length, angle determined experimentally
Valence Shell Electron Pair
Ch. 6.5 Bonding Theories Molecular Geometry.
Valence Shell Electron Pair Repulsion Theory (VSEPR)
Bellwork Monday Draw the following Lewis dot structures. CCl4 NH4+
Valence Shell Electron Pair Repulsion
MOLECULAR GEOMETRY Bonding Unit.
II. Molecular Geometry (p. 183 – 187)
Chapter 6 – 3 Molecular Geometry (p. 214 – 218)
Bonding Unit Part B) Structures and Shapes
Ch. 6 – Molecular Structure
Molecular Structure Molecular Geometry.
GEOMETRY AND POLARITY OF MOLECULES
Molecular Geometry bond length, angle determined experimentally
Valence Shell Electron Pair Repulsion
Chapter 10 Properties of Solids and Liquids
Molecular Geometry VSEPR Theory- “Valence- shell, electron-pair repulsion” states that repulsion between the sets of valence-level electrons surrounding.
Molecular Geometry 11/8 Opener:
Molecular shapes.
VESPR Theory.
5.1 Molecular Shape Obj 1 Chemistry.
Molecular Structure II. Molecular Geometry.
Molecular Geometry.
Molecular Geometry bond length, angle determined experimentally
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Molecular Geometry bond length, angle determined experimentally
II. Molecular Geometry (p. 183 – 187)
Valence Shell electron pair repulsion model 3D models
Molecular Shapes It mean the 3-D arrangement of atoms in a molecule
Molecular Shapes VSEPR Model
Molecular Shapes Mrs. Chan.
Molecular Geometry.
6.5 VSEPR Theory and Molecular Shapes
Valence Shell Electron Pair Repulsion
II. Molecular Geometry (p. 183 – 187)
II. Molecular Geometry (p. 183 – 187)
Valence Shell Electron-pair Repulsion model
Valence Shell Electron Pair Repulsion
Presentation transcript:

Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. The idea here is that the bonding and nonbonding pairs around a given atom will be positioned as far apart as possible. This chart is NOT provided on the AP exam!

Arrangement of electron pairs VSEPR A = central atom B = atoms bonded to central atom E = lone pairs (non-bonding) of electrons on central atom Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear B Bond angle

0 lone pairs on central atom 2 atoms bonded to central atom Cl Be 0 lone pairs on central atom 2 atoms bonded to central atom

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear trigonal planar trigonal planar AB3 3

VSEPR – Trigonal Planar arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal planar trigonal planar AB3 3 trigonal planar AB2E 2 1 bent

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear AB3 3 trigonal planar AB4 4 tetrahedral tetrahedral

VSEPR – Tetrahedral Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB4 4 tetrahedral tetrahedral trigonal pyramidal AB3E 3 1 tetrahedral

Arrangement of electron pairs Molecular Geometry VSEPR – Tetrahedral Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB4 4 tetrahedral tetrahedral AB3E 3 1 tetrahedral trigonal pyramidal AB2E2 2 2 tetrahedral bent H O

CH4 NH3 H2O Number of lone pairs 1 2 Bond angle 109.5o 107o 104.5o In these molecules, the arrangement of the electron pairs predict tetrahedral geometry. Why is the geometry different from predicted? Lone pairs require more room than bonding pairs and tend to compress the angles between the bonding pairs.

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear AB3 3 trigonal planar AB4 4 tetrahedral tetrahedral trigonal bipyramidal trigonal bipyramidal AB5 5

VSEPR – Trigonal Bipyramidal Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal bipyramidal trigonal bipyramidal AB5 5 trigonal bipyramidal See-Saw (distorted tetrahedron) AB4E 4 1

VSEPR – Trigonal Bipyramidal Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal bipyramidal trigonal bipyramidal AB5 5 AB4E 4 1 trigonal bipyramidal See-Saw trigonal bipyramidal AB3E2 3 2 T-shaped Cl F

VSEPR – Trigonal Bipyramidal Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal bipyramidal trigonal bipyramidal AB5 5 AB4E 4 1 trigonal bipyramidal See-Saw AB3E2 3 2 trigonal bipyramidal T-shaped trigonal bipyramidal AB2E3 2 3 linear I

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear AB3 3 trigonal planar AB4 4 tetrahedral tetrahedral AB5 5 trigonal bipyramidal AB6 6 octahedral octahedral

VSEPR – Octahedral Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB6 6 octahedral square pyramidal Br F AB5E 5 1 octahedral

VSEPR – Octahedral Arrangement Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB6 6 octahedral AB5E 5 1 octahedral square pyramidal AB4E2 4 2 octahedral square planar Xe F

Predicting Molecular Geometry Draw Lewis structure for molecule. Count number of lone pairs on the central atom and number of atoms bonded to the central atom. Use VSEPR to predict the geometry of the molecule. What are the molecular geometries of SO2 and SF4? (In SF4, S uses an expanded octet of 10.) S F AB4E S O S O See-Saw (distorted Tetrahedron) AB2E bent

Dipole Moments and Polar Molecules H F electron rich region electron poor region d+ d- A molecule such as HF that has a center of positive charge and a center of negative charge is said to have a dipole moment. The dipole moment is often represented by an arrow pointing to the negative charge center with the tail of the arrow indicating the positive center of charge.

Which of the following molecules have a dipole moment? H2O, CO2, SO2, and CH4 O H S O dipole moment polar molecule dipole moment polar molecule C H C O no dipole moment nonpolar molecule no dipole moment nonpolar molecule