Propagation of Supersymmetric Charged Slepton at High Energies

Slides:



Advertisements
Similar presentations
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Advertisements

DHC 101 Introduction to scintillation detectors. How many PE/MIP should we expect? Scintillation & Fluorescence WSFWSF PMTPEs  (MIP)
Particle interactions and detectors
CDF D0 Supersymmetry at the Tevatron R. Demina University of Rochester.
Discovery of Long-Lived The LHC Bryan Smith West Coast Theory Network University of California, Irvine 4 th May 2007 Work with Jonathan Feng,
PHYSICS OF NON-PROMPT TRACKS Jonathan Feng UC Irvine ALCPG 2007, Fermilab 25 October 2007.
Presented by Steve Kliewer Muon Lifetime Experiment: A Model.
Search for Long-Lived Particles at DØ Todd Adams Florida State University July 19, 2005 SUSY05 IPPP Durham.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Detecting Earth-Skimming and Mountain-Penetrating Tau Neutrinos G.-L.Lin National Chiao-Tung University, Taiwan ISMD04.
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Lecture 1.3: Interaction of Radiation with Matter
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
P ARTICLE D ETECTORS Mojtaba Mohammadi IPM-CMPP- February
Direct Detection of Supersymmetric Particles in Neutrino Telescopes Z. Chacko University of Arizona I. Albuquerque & G. Burdman.
Studying Very Light Gravitino at ILC Collaborators: T. Moroi (Tokyo) [for basic idea: arXiv: ] & K. Fujii (KEK), T. Moroi (Tokyo), T. Suehara (ICEPP)
Muon Monte Carlo: a versatile tool for lepton propagation through matter Dmitry Chirkin, LBNL, Berkeley, USA October 31, 2006, Dortmund University.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
Detection methods for long-lived particles at the LHC S. Viganò, A. De Min Università di Milano Bicocca.
SUSY08 Seoul 17 June 081 Daniel Teyssier RWTH Aachen University Searches for non-standard SUSY signatures in CMS on behalf of the CMS collaboration.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
March 22 Heidelberg 1 Majorana neutrino spectroscopy and measuring relic neutrino M. Yoshimura hep- ph/ Why atoms ? Another or perhaps a.
Doug Cowen, Tyce DeYoung, Soeb Razzaque April 25, 2006 A Novel Tau Signature in Neutrino Telescopes UHE Tau Neutrino Workshop Beijing, China.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
PRELIMINARY RESULTS OF SIMULATIONS L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow, Russia.
Gravitino Dark Matter in R-violating SUSY M. Lola MEXT-CT Work with N.E.Bomark, P.Osland and A.Raklev.
Latest New Phenomena Results from Alexey Popov (IHEP, Protvino) For the DO Collaboration ITEP, Moscow
Muon Monte Carlo: a versatile tool for lepton propagation through matter Dmitry Chirkin, UW, Madison, USA September 20, 2009, IceCube collaboration meeting.
The Hybrid Scheme of Simulations of the Electron- photon and Electron-hadron Cascades In a Dense Medium at Ultra-high Energies L.G. Dedenko M.V. Lomonosov.
Physics 222 UCSD/225b UCSB Lecture 16 Supersymmetry A purely phenomenological perspective. Disclaimer: I am not an expert on SUSY !!! All you get should.
Simulation of the CMS Endcap Alignment Scheme Using COCOA.
Detecting metastable staus and gravitinos at the ILC Hans-Ulrich Martyn RWTH Aachen & DESY.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Search for Anomalous Production of Multi-lepton Events at CDF Alon Attal Outline  Motivation  R p V SUSY  CDF & lepton detection  Analysis  Results.
Searching for CHAMPs at CDF
SOLAR ATMOSPHERE NEUTRINOS
another novel use of crystals
Towards Majorana neutrino spectroscopy M. Yoshimura
Shufang Su • U. of Arizona
Search for BSM at LHC Fayet Fest Paris November 9, 2016 Dirk Zerwas
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
Search for New Physics beyond the SM
Relativistic Magnetic Monopole Flux Constraints from RICE
SOLAR ATMOSPHERE NEUTRINOS
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
MUPAGE: A fast muon generator
Probing Supersymmetry with Neutral Current Scattering Experiments
A Novel Tau Signature in Neutrino Telescopes
RAA predictions show enhancement highly sensitive to jet quenching
A New Measurement of |Vus| from KTeV
Shufang Su • U. of Arizona
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
Supersymmetric Dark Matter
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Testing the Standard Model and Beyond
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
SUSY WIMP and Collider Signatures
ICRC2011, 32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011
Atomic Physics Uses of radiation.
Particles going through matter
(Tokyo university, ICRR)
Search for a New Vector Resonance in the pp WWtt+X Channel at LHC
Muon Lifetime Alden Deran.
Presentation transcript:

Propagation of Supersymmetric Charged Slepton at High Energies Shufang Su • U. of Arizona M.H. Reno, I. Sarcevic and S. Su hep-ph/0503030

Motivation Neutrino telescopes have great potential - Neutrino telescopes have great potential to probe new physics beyond SM  earth  ~ Gravitino LSP Stau NLSP   earth Msl=250 GeV Mwino=250 GeV Albuquerque, Chacko and Burdman (2003)  N  l ~ q  Larger production rate smaller production rate  = 2.197£ 10-6 sec c=659 meter Larger effective detector volumn S. Su stau propagation

stau energy loss - Discovery potential for neutrino telescope depends on the stau lifetime and range Crucial to determine the energy loss of the high energy stau as it traverse the earth S. Su stau propagation

Average energy loss of a particle traversing distance X stau energy loss - Average energy loss of a particle traversing distance X ionization energy loss Constant: =2 £ 10-3 cm2/g radiative energy loss m,  , more later … energy When  E ¿ , i.e. E ¿ 4 £ 105 GeV £ (msl/150 GeV) Stau range determined by ionization energy loss  or lifetime c  c = E / () S. Su stau propagation

radiative energy loss:  - photonuclear bremsstrahlung pair production S. Su stau propagation

radiative energy loss:  - Stau / 1/m Stau: mass dependence muon / 1/m2 S. Su stau propagation

stau range: X(E, E0)  E À   E ¿  m=250 GeV lifetime m=250 GeV - m=250 GeV lifetime m=250 GeV m=150 GeV E0=106 GeV lifetime m=250 GeV  E À  m=150 GeV m=150 GeV  E ¿  E0=103 GeV S. Su stau propagation

Comparison ? Xus / XABC In Albuquerque, Chacko and Burdman (2003) - In Albuquerque, Chacko and Burdman (2003) Rescale from :  = 0.8 £ 10-6 cm2/g  stau=9.5 £ 10-9 (150 GeV/mstau) cm2/g No energy dependence Xus / XABC ? Improve the potential of neutrino telescopes for detecting metastable stau S. Su stau propagation

Conclusion Stau radiative energy loss  is dominated by - Stau radiative energy loss  is dominated by photo-nuclear and pair production Photonuclear and pair: / 1/m Bremsstrahlung: / 1/m2 Low energy ( E ¿ ), stau range is determined by ionization energy loss or stau lifetime, X / E High energy ( E À ), stau range is determined by radiative energy loss, X / log (E) Previous estimation (scale stau) underestimate stau range by about a factor of two S. Su stau propagation