Second Derivative Test

Slides:



Advertisements
Similar presentations
DO NOW: Find where the function f(x) = 3x4 – 4x3 – 12x2 + 5
Advertisements

AP Calculus Section 3.4 Concavity and the Second Derivative Test
4.3 Connecting f’ and f’’ with the Graph of f
Section 3.4 – Concavity and the Second Derivative Test
Concavity and the Second Derivative Test
1 Concavity and the Second Derivative Test Section 3.4.
4.3 Derivatives and the shapes of graphs 4.4 Curve Sketching
Concavity & the second derivative test (3.4) December 4th, 2012.
Copyright © Cengage Learning. All rights reserved.
Objectives: 1.Be able to determine where a function is concave upward or concave downward with the use of calculus. 2.Be able to apply the second derivative.
Aim: Concavity & 2 nd Derivative Course: Calculus Do Now: Aim: The Scoop, the lump and the Second Derivative. Find the critical points for f(x) = sinxcosx;
Section 3.3 How Derivatives Affect the Shape of a Graph.
Miss Battaglia AP Calculus AB/BC.  Let f be differentiable on an open interval I. The graph of f is concave upward on I if f’ is increasing on the interval.
Relating Graphs of f and f’
Sec 3.4: Concavity and the Second Derivative Test
1 f ’’(x) > 0 for all x in I f(x) concave Up Concavity Test Sec 4.3: Concavity and the Second Derivative Test the curve lies above the tangentsthe curve.
Concavity and the Second- Derivative Test. 1. Determine the open intervals on which the graph of the function is concave upward or concave downward (similar.
The Shape of the Graph 3.3. Definition: Increasing Functions, Decreasing Functions Let f be a function defined on an interval I. Then, 1.f increases on.
Concavity of a graph A function is concave upward on an interval (a, b) if the graph of the function lies above its tangent lines at each point of (a,
4.3 How Derivatives Affect the Shape of a Graph. Facts If f ’( x ) > 0 on an interval ( a,b ), then f (x) is increasing on ( a,b ). If f ’( x ) < 0 on.
5.3:Higher Order Derivatives, Concavity and the 2 nd Derivative Test Objectives: To find Higher Order Derivatives To use the second derivative to test.
CALCULUS I Chapter III Additionnal Applications of the Derivative Mr. Saâd BELKOUCH.
In this section, we will investigate some graphical relationships between a function and its second derivative.
Applications of Derivatives
CHAPTER Continuity Derivatives and the Shapes of Curves.
Increasing/ Decreasing
In the past, one of the important uses of derivatives was as an aid in curve sketching. We usually use a calculator of computer to draw complicated graphs,
5.3:Higher Order Derivatives, Concavity and the 2 nd Derivative Test Objectives: To find Higher Order Derivatives To use the second derivative to test.
Ch. 5 – Applications of Derivatives
SECT 3-8B RELATING GRAPHS Handout: Relating Graphs.
Curve Sketching. Objective To analyze and sketch an accurate graph of a function. To analyze and sketch an accurate graph of a function.
Chapter 5: Applications of the Derivative Chapter 4: Derivatives Chapter 5: Applications.
CHAPTER 3 SECTION 3.4 CONCAVITY AND THE SECOND DERIVATIVE TEST.
How derivatives affect the shape of a graph ( Section 4.3) Alex Karassev.
Sketching Functions We are now going to use the concepts in the previous sections to sketch a function, find all max and min ( relative and absolute ),
4. Concavity and the 2 nd Derivative Test. Concavity If we know that a function has a positive derivative over an interval, we know the graph is increasing,
First derivative: is positive Curve is rising. is negative Curve is falling. is zero Possible local maximum or minimum. Second derivative: is positive.
Warm-upWarm-up 1.Find all values of c on the interval that satisfy the mean value theorem. 2. Find where increasing and decreasing.
What does say about f ? Increasing/decreasing test
Ch. 5 – Applications of Derivatives
Section 4.4 The Shape of a Graph
Relative Extrema and More Analysis of Functions
4.3 Using Derivatives for Curve Sketching.
Concavity.
4.3 Derivatives and the shapes of graphs 4.5 Curve Sketching
Lesson 37 - Second Derivatives, Concavity, Inflection Points
Relationship between First Derivative, Second Derivative and the Shape of a Graph 3.3.
Applications of the Derivative
Connecting f′ and f″ with the graph of f
Concavity and the Second Derivative Test
1 2 Sec 4.3: Concavity and the Second Derivative Test
Application of Derivative in Analyzing the Properties of Functions
Sec 3.4: Concavity and the Second Derivative Test
3.4: Concavity and the Second Derivative Test
Second Derivatives, Inflection Points and Concavity
For each table, decide if y’is positive or negative and if y’’ is positive or negative
Concave Upward, Concave Downward
4.3 Connecting f’ and f’’ with the graph of f
For each table, decide if y’is positive or negative and if y’’ is positive or negative
Connecting f′ and f″ with the graph of f
Derivatives and Graphing
1 2 Sec4.3: HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH
Section 3.4 – Concavity and the Second Derivative Test
Copyright © Cengage Learning. All rights reserved.
Concavity & the second derivative test (3.4)
Concavity & the 2nd Derivative Test
Math 1304 Calculus I 4.03 – Curve Shape.
- Derivatives and the shapes of graphs - Curve Sketching
Relationship between First Derivative, Second Derivative and the Shape of a Graph 3.3.
Presentation transcript:

Second Derivative Test

Concavity If the graph of a function f lies above all of its tangents, then it is called concave upward If the graph of a function f lies below all of its tangents, then it is called concave downward

Test for Concavity If f’’ > 0 for all x in an interval, then the graph is concave upward If f’’ < 0 for all x in an interval, then the graph is concave downward

Example Determine areas of concavity for

Example Determine where the graph is concave up and concave down

Inflection Points Where a curve changes concavity

Example Determine Inflection Points for

Second Derivative Test The second derivative can be used to identify local max and min values as well If f’ = 0 and the second derivative exists on an interval 1) If f’’(c) > 0, then this c is a minimum 2) If f’’(c) < 0, then this c is a maximum

Example Use the second derivative test to locate the extrema of