Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.

Slides:



Advertisements
Similar presentations
6.1/6.2/6.6/6.7 Graphing , Solving, Analyzing Parabolas
Advertisements

By: Silvio, Jacob, and Sam.  Linear Function- a function defined by f(x)=mx+b  Quadratic Function-a function defined by f(x)=ax^2 + bx+c  Parabola-
Identifying Quadratic Functions
Exploring Quadratic Graphs
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Quadratic Functions; An Introduction
Grade 8 Algebra I Identifying Quadratic Functions
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Identifying Quadratic Functions
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Quadratic Functions Objectives: Graph a Quadratic Function using Transformations Identify the Vertex and Axis of Symmetry of a Quadratic Function Graph.
Holt Algebra Identifying Quadratic Functions 9-1 Identifying Quadratic Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
9-1 Quadratic Equations and Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
9-1 Quadratic Equations and Functions Solutions of the equation y = x 2 are shown in the graph. Notice that the graph is not linear. The equation y = x.
Graphing Parabolas Students will be able to graph parabolas or second degree equations.
Unit 1B Quadratics Day 2. Graphing a Quadratic Function EQ: How do we graph a quadratic function in standard form? M2 Unit 1B: Day 2 Lesson 3.1A.
5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
Graphing Quadratic Functions Quadratic functions have the form: y = ax 2 + bx + c When we graph them, they make a parabola!
Lesson 8-1 :Identifying Quadratic Functions Lesson 8-2 Characteristics of Quadratic Functions Obj: The student will be able to 1) Identify quadratic functions.
Quadratic Graphs and Their Properties
Graphing Quadratic Functions
How To Graph Quadratic Equations Standard Form.
Graphing Quadratic Functions
Chapter 3 Quadratic Functions
Identifying Quadratic Functions
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
y = ax2 + bx + c Quadratic Function Quadratic Term Linear Term
Graphing Quadratic Functions
Chapter 4 Vocabulary Functions.
13 Algebra 1 NOTES Unit 13.
Graphing Quadratic Functions
Identifying quadratic functions
9.1 Quadratic Functions Algebra 17.0, 21.0.
How to Graph Quadratic Equations
Properties of Quadratic Functions in Standard Form 5-1
Objectives Transform quadratic functions.
Graphing Quadratic Functions
How To Graph Quadratic Equations
Solving a Quadratic Equation by Graphing
parabola up down vertex Graph Quadratic Equations axis of symmetry
CHAPTER 6 SECTION 1 GRAPHING QUADRATIC FUNCTIONS
Algebra 1 Section 12.7.
Identifying Quadratic Functions
3.1 Quadratic Functions and Models
9.1 Graph Quadratic Functions Alg. I
Before: March 12, 2018 Evaluate x² + 5x for x = 4 and x = -3.
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3.
Objectives Identify linear functions and linear equations.
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Find the x-coordinate of the vertex
Warm Up Graph:
9.1 Graphing Quadratic Functions
How To Graph Quadratic Equations.
Graphing Quadratic Functions
Warm Up Evaluate (plug the x values into the expression) x2 + 5x for x = 4 and x = –3. 2. Generate ordered pairs for the function y = x2 + 2 with the.
Graphing Quadratic Functions
Learning Targets Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum. And also graph a quadratic.
3.1 Quadratic Functions and Models
How To Graph Quadratic Equations.
Ch.4.8 Quadratic Functions Preview
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Warm up Graph the Function using a table Use x values -1,0,1,2,3
4.1 Graphing Quadratic Functions
Graphing Quadratic Functions
How To Graph Quadratic Equations.
Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions.
Presentation transcript:

Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.

In Lesson 5-1, you identified linear functions by finding that a constant change in x corresponded to a constant change in y. The differences between y-values for a constant change in x-values are called first differences.

Example 1A: Identifying Quadratic Functions Tell whether the function is quadratic. Explain. Since you are given a table of ordered pairs with a constant change in x-values, see if the second differences are constant. x y –2 –9 +1 +7 +1 –6 +0 +6 –1 –2 –1 1 Find the first differences, then find the second differences. 2 7 The function is not quadratic. The second differences are not constant.

Tell whether the function is quadratic. Explain. Check It Out! Example 1a Tell whether the function is quadratic. Explain. Since you are given a table of ordered pairs with a constant change in x-values, see if the second differences are constant. x y –2 4 +1 –3 –1 +1 +3 +2 –1 1 1 1 Find the first differences, then find the second differences. 2 4 The function is quadratic. The second differences are quadratic.

Example 1B: Identifying Quadratic Functions Tell whether the function is quadratic. Explain. Since you are given an equation, use y = ax2 + bx + c. y = 7x + 3 This is not a quadratic function because the value of a is 0.

Example 1C: Identifying Quadratic Functions Tell whether the function is quadratic. Explain. y – 10x2 = 9 Try to write the function in the form y = ax2 + bx + c by solving for y. Add 10x2 to both sides. + 10x2 +10x2 y – 10x2 = 9 y = 10x2 + 9 This is a quadratic function because it can be written in the form y = ax2 + bx + c where a = 10, b = 0, and c =9.

Check It Out! Example 1b Tell whether the function is quadratic. Explain. y + x = 2x2 Try to write the function in the form y = ax2 + bx + c by solving for y. Subtract x from both sides. – x – x y + x = 2x2 y = 2x2 – x This is a quadratic function because it can be written in the form y = ax2 + bx + c where a = 2, b = –1, and c = 0.

The graph of a quadratic function is a curve called a parabola The graph of a quadratic function is a curve called a parabola. To graph a quadratic function, generate enough ordered pairs to see the shape of the parabola. Then connect the points with a smooth curve.

Check It Out! Example 2a Use a table of values to graph each quadratic function. y = x2 + 2 Make a table of values. Choose values of x and use them to find values of y. x –2 –1 1 2 y 2 3 6 Graph the points. Then connect the points with a smooth curve.

Example 2A: Graphing Quadratic Functions by Using a Table of Values Use a table of values to graph the quadratic function. Make a table of values. Choose values of x and use them to find values of y. x y –3 –1 1 3 3 1 Graph the points. Then connect the points with a smooth curve. 3

Example 2B: Graphing Quadratic Functions by Using a Table of Values Use a table of values to graph the quadratic function. y = –4x2 x –2 –1 1 2 y –4 –16 Make a table of values. Choose values of x and use them to find values of y. Graph the points. Then connect the points with a smooth curve.

When a quadratic function is written in the form y = ax2 + bx + c, the value of a determines the direction a parabola opens. A parabola opens upward when ax2 is positive. A parabola opens downward when ax2 is negative.

The highest or lowest point on a parabola is the vertex The highest or lowest point on a parabola is the vertex. If a parabola opens upward, the vertex is the lowest point. If a parabola opens downward, the vertex is the highest point.

Example 4: Identifying the Vertex and the Minimum or Maximum Identify the vertex of each parabola. Then give the minimum or maximum value of the function. A. B. The vertex is (–3, 2), and the minimum is 2. The vertex is (2, 5), and the maximum is 5.

Check It Out! Example 4 Identify the vertex of each parabola. Then give the minimum or maximum value of the function. a. b. The vertex is (–2, 5) and the maximum is 5. The vertex is (3, –1), and the minimum is –1.