Lunar Laser Ranging - A Science Tool for Geodesy and General Relativity Jürgen Müller Institut für Erdmessung, Leibniz Universität Hannover, Germany 16th.

Slides:



Advertisements
Similar presentations
Lectures D25-D26 : 3D Rigid Body Dynamics
Advertisements

1 Measurement of the Gravitational Time Delay Using Drag-Free Spacecraft and an Optical Clock Neil Ashby, Dept. of Physics, UCB 390, University of Colorado,
Satellite geodesy, Fall C.C.Tscherning, University of Copenhagen,
03/000 First geodetic results from the AuScope VLBI network Oleg Titov Australian Government Geoscience Australia UTAS, Hobart, 20 June 2012.
Dennis D. McCarthy Elements of Prediction. Why are we here? IERS Working Group on Predictions IERS Working Group on Predictions Definitive user requirements.
Universal Gravitation
Obliquity-oblateness feedback at the Moon Bruce G. Bills 1 with help from William B. Moore 2 Matthew A. Siegler 3 William I. Newman 3 1 Jet Propulsion.
Principles of the Global Positioning System Lecture 19 Prof. Thomas Herring Room A;
Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue | A | Cambridge MA V F.
On the alternative approaches to ITRF formulation. A theoretical comparison. Department of Geodesy and Surveying Aristotle University of Thessaloniki Athanasios.
THE AUSTRALIAN NATIONAL UNIVERSITY Infrasound Technology Workshop, November 2007, Tokyo, Japan OPTIMUM ARRAY DESIGN FOR THE DETECTION OF DISTANT.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
1 International Conference on RadioAstron Mission November 2003, Moscow ASTROMETRIC GOALS OF THE RADIOASTRON MISSION V.E.ZHAROV 1, A.E.RODIN 2, I.A.GERASIMOV.
TNO orbit computation: analysing the observed population Jenni Virtanen Observatory, University of Helsinki Workshop on Transneptunian objects - Dynamical.
2-3 November 2009NASA Sea Level Workshop1 The Terrestrial Reference Frame and its Impact on Sea Level Change Studies GPS VLBI John Ries Center for Space.
Gravitational physics, planetary science and exploration with laser retroreflectors Manuele Martini Laboratori Nazionali di Frascati (LNF) dell’INFN, Frascati.
Outline of the Lectures Lecture 1: The Einstein Equivalence Principle Lecture 2: Post-Newtonian Limit of GR Lecture 3: The Parametrized Post-Newtonian.
Institut for Geodesy Research Unit Earth Rotation and Global Dynamic Processes Earth Orientation Parameters from Lunar Laser Ranging Liliane Biskupek Jürgen.
International Terrestrial Reference Frame - Latest Developments Horst Müller 16th International Workshop on Laser Ranging, Poznan, Poland, October
Laser ranging to Mars Shapiro delay: –can measure (1+  )/2 effect to ~ 2  level with 1 cm range precision to Mars –translates to 4  determination.
16 years of LAGEOS-2 Spin Data from launch to present Daniel Kucharski, Georg Kirchner, Franz Koidl Space Research Institute Austrian Academy of Sciences.
Summary: Scientific Achievement, Applications and Future Requirements Zueheir Altamimi Steve Klosko Richard Gross Aleksander Brzezinski.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 5.
D epartment of P hysics Brown APJC – August 2008 Recent Precision Tests of General Relativity Thomas P. Kling Brown Astrophysics Journal Club August 2008.
Laser Ranging Contributions to Earth Rotation Studies Richard S. Gross Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109–8099,
1 Millimeter Laser Ranging to the Moon: a comprehensive theoretical model for advanced data analysis Dr. Sergei Kopeikin Dr. Erricos Pavlis (Univ. of Maryland)
Principles of the Global Positioning System Lecture 14 Prof. Thomas Herring Room A;
Gravitomagnetism The Myth and the Legend
IGS Analysis Center Workshop, Miami Beach, 2-6 June 2008 M. Fritsche, R. Dietrich, A. Rülke Institut für Planetare Geodäsie (IPG), Technische Universität.
ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München
NASA, CGMS-41, July 2013 Coordination Group for Meteorological Satellites - CGMS The Terrestrial Reference Frame by NASA Presented to CGMS-41 Working Group.
03/000 Cosmologic astrometry Australian Government Geoscience Australia Yonsei University, Seoul 18 October 2010.
Coordinate systems on the Moon and the physical libration Natalia Petrova Kazan state university, Russia 20 September, 2007, Mitaka.
E. C. Pavlis Geoscience Australia Seminar Canberra, Australia 29 August, 2005 Implications of SLR Network Variations On Geodetic and Geophysical Products.
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
Recent determination of Gamma with Cassini M.T. Crosta, F. Mignard CNRS-O.C.A. 5th RRFWG, June, Estec.
The Future of the VLBA Workshop, Charlottesville, VA Earth Orientation and GPS Outline Geodetic VLBI background Applications of Geodetic VLBI VLBI for.
IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
Testing Gravity with Lunar Laser Ranging DoE Site Visit James Battat August 21, 2006.
01/0000 HEO and Daylight Ranging “Reality and Wishes” Ramesh Govind ILRS Fall Workshop, 4 th October 2005.
The ICRF, ITRF and VLBA Chopo Ma NASA’s Goddard Spaceflight Center.
Geocenter Variations Derived from GRACE Data Z. Kang, B. Tapley, J. Chen, J. Ries, S. Bettadpur Joint International GSTM and SPP Symposium GFZ Potsdam,
Gravimetry Geodesy Rotation
Franz Hofmann, Jürgen Müller, Institut für Erdmessung, Leibniz Universität Hannover Institut für Erdmessung Hannover LLR analysis software „LUNAR“
International Workshop on Laser Ranging, October 2008, Poznań (Poland) Quality assessment of the ILRS EOP „Daily” Product G. Bianco Agenzia Spaziale.
S/X receiver for Parkes geodetic VLBI program 29 October 2012 ATNF, Sydney 29 October 2012 Оleg Titov (Geoscience Australia)
Earth Surface and Interior Focus Area Space Geodetic Networks for Maintaining the Reference Frame Geodesy's Critical Contributions to NASA (Earth Science)
Space-Time coordinates are not fundamental,
Principles of the Global Positioning System Lecture 18 Prof. Thomas Herring Room A;
LLR Analysis – Relativistic Model and Tests of Gravitational Physics James G. Williams Dale H. Boggs Slava G. Turyshev Jet Propulsion Laboratory California.
C H A M P International Laser Ranging Service - General Assembly, October 2005 Eastbourne, UK L. Grunwaldt, R. Schmidt, D. König, R. König, F.-H. Massmann.
Satellite geodesy (ge-2112) Introduction E. Schrama.
A proposal for a consistent model of air pressure loading as part of the International Terrestrial Reference System (ITRS) Conventions Plag, H.-P. (1),
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
Vermelding onderdeel organisatie A 3-year series of Earth’s gravity field derived from GRACE range measurements Xianglin Liu, Pavel Ditmar, Qile Zhao,
What Goes into a Pulsar Timing Model? David Nice Physics Department, Princeton University Pulsar Timing Array: A Nanohertz Gravitational Wave Telescope.
12.201/ Essentials of Geophysics Geodesy and Earth Rotation Prof. Thomas Herring
Soichiro Isoyama Collaborators : Norichika Sago, Ryuichi Fujita, and Takahiro Tanaka The gravitational wave from an EMRI binary Influence of the beyond.
Testing general relativity experimentally: Equivalence Principle Tests
Thomas Herring, IERS ACC, MIT
8th January 2008 Taitung workshop Sachie Shiomi
10th Inkaba yeAfrica/!Khure Africa (AEON) Conference/Workshop
Space Geodesy Branch Highlights, August 2002 CONT02 VLBI Campaign
Dynamics Dynamics Rotational K.E. Tides g as a function of latitude
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
VLBI Estimates of Vertical Crustal Motion in Europe
Principles of the Global Positioning System Lecture 14
Motivation Time Series Analysis Spectra and Results Conclusions
Diurnal and Semi-Diurnal Earth Rotation from 37 Years of VLBI Data
Presentation transcript:

Lunar Laser Ranging - A Science Tool for Geodesy and General Relativity Jürgen Müller Institut für Erdmessung, Leibniz Universität Hannover, Germany 16th International Workshop on Laser Ranging, Poznan, October 13, 2008

Acknowledgement Work has been supported by DFG Research Unit FOR584 Earth Rotation and Global Dynamic Processes (computations by Liliane Biskupek) and the Centre of Excellence QUEST (Quantum Engineering and Space-Time Research)

Contents Introduction - Motivation Lunar Laser Ranging - Data (distribution and accuracy) - Analysis Relativity Tests Conclusions - Future capabilities

Lunar Laser Ranging (LLR) l 38 years of observations l Modelling so far at cm-level l Long-term stability (e.g., orbit)  Earth-Moon dynamics  Relativity parameters McDonald Wettzell Hawaii Grasse Orroral Matera Apollo ?? 4

Retro-Reflectors on the Moon Apollo 11 July 1969 Apollo 14 Jan./Feb.`71 Apollo 15 Jul./Aug.`71 Luna 21 Jan.`73... Luna 17 Nov.`70... Apollo11 Luna 21 Apollo14 Apollo15 Luna 17 X

LLR Observations per Year Number of observations; annually averaged; normal points in total, between1970 and 2008

- large data gaps near Full and New Moon Distribution of Observations per Synodic Month No data Sun Moon Earth Full Moon New Moon

?  model?  observations? Weighted Annual Residuals weighted residuals (observed - computed Earth-Moon distance), annually averaged

LLR Results (Theory) Analysis - model based upon Einstein's Theory - least-squares adjustment - determination of the parameters of the Earth-Moon system (about 180 unknowns, without EOPs) Results of major interest - station coordinates and velocities (ITRF2000) - GGOS - Earth rotation,  = 0.5 mas (IERS) - relativity parameters (grav. constant, equivalence principle, metric...) -... lunar interior... GGOS – Global Geodetic Observing System

Example: Gravitational Constant G Investigation of secular and quadratic variations Results

Sensitivity Study for Sensitivity analysis via Separation of free and forced terms  two orbit solutions: 1)perturbed, 2)un-perturbed  difference

als Spektrum Corresponding Spectrum

Example: Nordtvedt Effect Test of the strong equivalence principle: Shift of the lunar orbit towards the Sun? No! -- Realistic error: below 1 cm

Relativistic Parameters – Power Spectra (1) Equivalence principle m G /m I 412 d = anom-syn 206 d = 2anom-2syn anomal 132 d = 2anom-2syn+ann syn2syn ~ 10 d 31.8d = 2syn-anomal

Relativistic Parameters – Power Spectra (2) Gravito-magnetic effect (PPN parameter   ) in the solar system   =(1.6  4) · Soffel et al. 2008, PRD

Results - Relativity ParameterResults Nordtvedt parameter  (violation of the strong equivalence principle) (6  7) · time variable gravitational constant (  unification of the fundamental interactions) (2  7) · (4  5) · difference of geodetic precession  GP -  deSit [  /cy] (1.92  /cy predicted by Einstein’s theory of gravitation) (6  10) · metric parameter  - 1 (space curvature;  = 1 in Einstein) (4  5) · metric parameter  - 1 (non-linearity;  = 1) or using  = 4  -  Cassini - 3 with  Cassini -1 (~10 -5 ) (-2  4) · (1.5  1.8) ·10 -4

Results – Relativity (2) ParameterResults Yukawa coupling constant  = km (test of Newton’s inverse square law for the Earth- Moon distance) (3  2) · special relativity  1 -  (search for a preferred frame within special relativity) (-5  12) · influence of dark matter  gc [cm/s 2 ] (in the center of the galaxy; test of strong equivalence principle) (4  4) · preferred frame effects  1  2 (coupled with velocity of the solar system) (-4  9) · (2  2) ·10 -5 preferred frame effect  1 (coupled with dynamics within the solar system) (1.6  3) · 10 -3

Further Applications Reference frames - dynamic realisation of the ICRS by the lunar orbit,  < 0.01“ (stable, highly accurate orbit, no non- conservative forces from atmosphere) Earth orientation - Earth rotation (e.g. UT0, VOL) - long-term nutation coefficients, precession Relativity - test of further theories, Lense-Thirring effect Combination with other techniques - combined EOP series and reference frames (GGOS) - ‚Moon‘ as long-term stable clock see Biskupek/Müller, session 6, Tuesday

New Combined Products Earth orientation u UT0 (VLBI) u Long-periodic nutation, precession (VLBI, GPS, SLR) Celestial reference frame u Dynamic realisation of ICRS, ephemeris u tie between the lunar network and the radio reference frame (VLBI) Gravitational physics parameters u Space curvature (VLBI) u Lense-Thirring precession (SLR) u Others (Grav. constant, equivalence principle metric) Lunar interior

Conclusions LLR contributes to better understanding of - Reference frames (ITRF, dynamic ICRF) - Earth orientation (IERS) - Earth-Moon system - Relativity - Lunar interior - … … and supports Global Geodetic Observing System In future: new lunar ranging experiment (and combination with other techniques)

Future Lunar Missions New high resolution photographs of reflector arrays - better lunar geodetic network - lunar maps Lunar Reconnaissance Orbiter (LRO) Deployment of transponders (6 yr lifetime) and new retro- reflectors on the Moon or in lunar orbit - more observatories - tie to VLBI (inertial reference frames)

New Ranging Measurements – Why? New data needed to constrain lunar interior structure u improve measurements of forced librations u measure tidal distortion (amplitude and phase) u lunar oscillations as response to large quakes or impacts? Improve on limits of relativistic effects u time variability of the gravitational constant u test of strong equivalence principle (Nordtvedt effect) Improve the tie between the lunar network and the radio reference frame (VLBI) Above goals require more data, more accurate data, and unbiased measurements!