Razlaga korelacije vzročna povezanost X in Y ???

Slides:



Advertisements
Similar presentations
1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Advertisements

Structural Equation Modeling
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 12 l Multiple Regression: Predicting One Factor from Several Others.
LINEAR REGRESSION: Evaluating Regression Models Overview Assumptions for Linear Regression Evaluating a Regression Model.
LINEAR REGRESSION: Evaluating Regression Models. Overview Assumptions for Linear Regression Evaluating a Regression Model.
LINEAR REGRESSION: Evaluating Regression Models. Overview Standard Error of the Estimate Goodness of Fit Coefficient of Determination Regression Coefficients.
Statistics for the Social Sciences
Bivariate Regression CJ 526 Statistical Analysis in Criminal Justice.
Canonical Correlation: Equations Psy 524 Andrew Ainsworth.
Simple Linear Regression Analysis
Lecture 5 Correlation and Regression
Structural Equation Models – Path Analysis
Correlation and Regression
Example of Simple and Multiple Regression
Managerial Economics Demand Estimation. Scatter Diagram Regression Analysis.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
Statistics for the Social Sciences Psychology 340 Fall 2013 Correlation and Regression.
Soc 3306a Lecture 9: Multivariate 2 More on Multiple Regression: Building a Model and Interpreting Coefficients.
Multiple Regression The Basics. Multiple Regression (MR) Predicting one DV from a set of predictors, the DV should be interval/ratio or at least assumed.
Regression Models Residuals and Diagnosing the Quality of a Model.
Copyright © 2005 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Managerial Economics Thomas Maurice eighth edition Chapter 4.
MGS3100_04.ppt/Sep 29, 2015/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Regression Sep 29 and 30, 2015.
Fundamental Statistics in Applied Linguistics Research Spring 2010 Weekend MA Program on Applied English Dr. Da-Fu Huang.
Chapter 13 Multiple Regression
Multiple Regression. Simple Regression in detail Y i = β o + β 1 x i + ε i Where Y => Dependent variable X => Independent variable β o => Model parameter.
Chapter 4 The Classical Model Copyright © 2011 Pearson Addison-Wesley. All rights reserved. Slides by Niels-Hugo Blunch Washington and Lee University.
Environmental Modeling Basic Testing Methods - Statistics III.
Correlation & Regression Analysis
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
Regression. Outline of Today’s Discussion 1.Coefficient of Determination 2.Regression Analysis: Introduction 3.Regression Analysis: SPSS 4.Regression.
Using SPSS Note: The use of another statistical package such as Minitab is similar to using SPSS.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 14-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Significance Tests for Regression Analysis. A. Testing the Significance of Regression Models The first important significance test is for the regression.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
Chapter 14 Introduction to Multiple Regression
Correlation, Bivariate Regression, and Multiple Regression
Statistics for the Social Sciences
Basic Estimation Techniques
Regression Analysis Part D Model Building
Coefficient of Determination
Multiple Regression Analysis and Model Building
Chapter 13 Created by Bethany Stubbe and Stephan Kogitz.
Regression Analysis.
Analysis of Covariance (ANCOVA)
Quantitative Methods Simple Regression.
Section 9-3   We already know how to calculate the correlation coefficient, r. The square of this coefficient is called the coefficient of determination.
Correlation and Simple Linear Regression
Calculating Reliability of Quantitative Measures
Korelacijske metode psihologija (1.st.) – 2. letnik 2011/12
Basic Estimation Techniques
2. Find the equation of line of regression
Chapter 6: MULTIPLE REGRESSION ANALYSIS
Binarna logistična regresija
Multiple Regression Models
Correlation and Regression
More Multiple Regression
24/02/11 Tutorial 3 Inferential Statistics, Statistical Modelling & Survey Methods (BS2506) Pairach Piboonrungroj (Champ)
Cause (Part II) - Causal Systems
Model Comparison: some basic concepts
Correlation and Simple Linear Regression
Statistics for the Social Sciences
More Multiple Regression
Coefficient of Determination & using technology
Simple Linear Regression and Correlation
Product moment correlation
Quote of the Day "Not everything that counts can be counted and not everything that can be counted counts". Albert Einstein.
Tutorial 6 SEG rd Oct..
Introduction to Regression
Section 9-3   We already know how to calculate the correlation coefficient, r. The square of this coefficient is called the coefficient of determination.
MGS 3100 Business Analysis Regression Feb 18, 2016
Presentation transcript:

Razlaga korelacije vzročna povezanost X in Y ??? eksperiment X in Y imata skupne vzroke Kaj se zgodi s korelacijo, če kontroliramo (ohranjamo konstantno) vrednost tretje spremenljivke? korelacijski načrt; nadzorovanje vzrokov, ki jih ne moremo eksperimentalno spreminjati

PARCIALNA KORELACIJA

Uporaba ko povezanost med dvema spremenljivkama ni “čista”, ampak nanjo vpliva t.i. tretja spremenljivka ko pri iskanju odnosa med X in Y združimo več skupin, ki nimajo enakih aritmetičnih sredin na X (Z vpliva na X)

Primer Korelacija med telesno višino (V) in dolžino las (L) je negativna. Razlaga: ženske so v povprečju nižje od moških; ženske imajo v povprečju daljše lase; kakšna je “čista” povezava V - L, bomo ugotovili, če iz povezave med V in L izključimo vpliv povezanosti spol - V in spol - L = parcialna korelacija

Parcialna korelacija pri zveznih spremenljivkah

... varianca Y, ki jo samostojno pojasnjuje X z x ... varianca Y, ki jo samostojno pojasnjuje X ... varianca Y, ki jo samostojno pojasnjuje Z ... varianca Y, ki jo skupno pojasnjujeta X in Z ... varianca Y, ki je X in Z ne pojasnjujeta (nepojasnjena varianca Y) r2xy.z = / ( + ) + ... delež variance, ki po upoštevanju Z ostane nepojasnjen

MULTIPLA KORELACIJA

Koeficient multiple korelacije y R2y.xz = ( + + ) / var Y z x

Multipla korelacija Statistična pomembnost R: N ... število točk k ... število prediktorjev df1 = k, df2 = N - k- 1

MULTIPLA REGRESIJA

Multipla regresija več prediktorjev (“NV”), npr. X1 in X2, en kriterij (“OV”), npr. Y Y’ ... linearna kombinacija X-ov poiskati obtežitve b za prediktorje, tako da bomo lahko kar najbolje pojasnili varianco Y enačba MR za 2 prediktorja 3D prikaz - ravnina, ki najbolje prilega točkam Y

Multipla regresija y enostavna regresija: varpoj = r2XY dodajanje novih prediktorjev: upoštevati moramo tudi korelacije med prediktorji, da pri pojasnjevanju ne podvajamo z R2y.xz = ( + + ) / var Y x / var Y = r2zy(x) semi-parcialna korelacija (upor. pri multipli regresiji) / ( + ) = r2zy.x parcialna korelacija R2y.xz = r2xy + r2zy(x)

Multipla regresija surove vrednosti — obtežitve b standardizirane vrednosti — obtežitve  koeficenti (standardizirani b) k ... število prediktorjev df1 = k, df2 = N - k- 1

Multipla regresija Pomembnost prirasta v R2 po dodajanju novega prediktorja: Rb...multipla korelacija po vključitvi b prediktorjev Ra...multipla korelacija po vključitvi a prediktorjev b > a k ... število prediktorjev df1 = kb-ka, df2 = N - kb- 1

Primer multiple regresije trije kazalci uspešnosti pri delu WORK_1, WORK_2, WORK_3 napovedovanje WORK_1 na podlagi poznavanja WORK_2 in WORK_3 Deskriptivna statistika:

1. Pregled podatkov - deskriptivna statistika:

3. Izračun regresijskih parametrov koeficient multiple korelacije The tolerance of a variable is defined as 1 minus the squared multiple correlation of this variable with all other independent variables in the regression equation. Therefore, the smaller the tolerance of a variable, the more redundant is its contribution to the regression (i.e., it is redundant with the contribution of other independent variables). If the tolerance of any of the variables in the regression equation is equal to zero (or very close to zero) then the regression equation cannot be evaluated (the matrix is said to be ill-conditioned, and it cannot be inverted. If the tolerance of a variable entered into the regression equation is less than the default tolerance value (.01) it means that this variable is 99 percent redundant with (identical to) the variables already in the equation. Forcing very redundant variables into the regression equation is not only questionable in terms of relevance of results, but the resultant estimates (regression coefficients) will become increasingly unreliable. Adjusted R-Square is an adjustment for the fact that when one has a large number of independents, it is possible that R2 will become artificially high simply because some independents' chance variations "explain" small parts of the variance of the dependent. At the extreme, when there are as many independents as cases in the sample, R2 will always be 1.0. The adjustment to the formula lowers R2 as p, the number of independents, increases. Put another way, adjusted R2 is a downward adjustment of R2 to adjust for one model having more degrees of freedom than another model. When used for the case of a few independents, R2 and adjusted R2 will be close. When there are many independents, adjusted R2 may be noticeably lower (and in rare cases may even be negative). The greater the number of independents, the more the researcher is expected to report the adjusted coefficient. Always use adjusted R2 when comparing models with different numbers of independents. However, Gujarati (2006: 229) also recommends, "Even when we are not comparing two regression models, it is a good practice to find the adjusted R2 value because it explicitly takes into account the number of variables included in the model." Adjusted R2 = 1 - ( (1-R2)(N-1 / N - k - 1) ), where n is sample size and k is the number of terms in the model not counting the constant (i.e., the number of independents). In SPSS, Analyze, Regression, Linear; click the Statistics button; make sure Estimates is checked to get adjusted R-Square. napoved WORK_1: WORK_1’ = 0.232 + 0.504 ·WORK_2 + 0.479 ·WORK_3 samostojno pojasni 6.2 % var samostojno pojasni 6.9 % var delita si pojasnjevanje 35.7 % var skupno pojasnita 53.6 % var

Pregled rezidualov odnos med napovedanimi vrednostmi in reziduali odnos med dejanskimi vrednostmi in reziduali