Miller equivalent circuit

Slides:



Advertisements
Similar presentations
MULTISTAGE AMPLIFIERS
Advertisements

DIFFERENTIAL AMPLIFIERS. DIFFERENTIAL AMPLIFIER 1.VERY HIGH INPUT IMPEDENCE 2.VERY HIGH BANDWIDTH 3.DIFFERENTIAL INPUT 4.DC DIFFERENTIAL INPUT ACCEPTED.
Amplifier Circuit This amplifier circuit DC analysis.
1 EE 501 Fall 2009 Design Project 1 Fully differential multi-stage CMOS Op Amp with Common Mode Feedback and Compensation for high GB.
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design –Find an architecture already available and adapt it to present.
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
Recall Last Lecture Biasing of BJT Applications of BJT
Feedback Xs Xi Xo + - Xf βf
Recall Last Lecture Biasing of BJT Three types of biasing
ANALOGUE ELECTRONICS CIRCUITS I
FET Amplifier Circuits Analysis
ANALOGUE ELECTRONICS I
Recall Lecture 17 MOSFET DC Analysis
COMMON-GATE AMPLIFIER
Recall Last Lecture Introduction to BJT Amplifier
Recall Lecture 14 Introduction to BJT Amplifier
Recall Lecture 17 MOSFET DC Analysis
Lecture 13 High-Gain Differential Amplifier Design
ANALOGUE ELECTRONICS I
Design: architecture selection plus biasing/sizing
Recall Lecture 17 MOSFET DC Analysis
Voltage doubler for gate overdrive

VDD M3 M1 Vbb Vin CL Rb Vo VDD Vo Vb3
CASCODE AMPLIFIER.
Subject Name: Microelectronics Circuits Subject Code: 10EC63
Fully differential op amps
vs vb cc VDD M9 M12 M11 Iref M1 M2 vo vin- vin+= voQ = vo CL M3 M4 M13
Last time Small signal DC analysis Goal: Mainly use CS as example
Last time Large signal DC analysis Current mirror example
Operational Amplifiers
Ch. 5 – Operational Amplifiers
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin

MULTISTAGE AMPLIFIERS
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M4 M3 M4 M13 Rbp vo+ CL vo-
Recall Last Lecture Introduction to BJT Amplifier
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
VDD VDD Vo<VG6+|Vt6| =VDD - |Vtp| - 2Veff M7 M5 M8 M6 vo
For a differential amplifer: vin+=vic+vid/2, vin-=vic-vid/2
Lecture 13 High-Gain Differential Amplifier Design
vs vin- vin+ vbp vbn vbn vbb vbb VDD VDD M9 M12 M1 M2 v- v+ Iref M3 M4
Last time Reviewed 4 devices in CMOS Transistors: main device
Recall Last Lecture Introduction to BJT Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Basic current mirror Small signal: Rin = 1/(gm1+gds1)  1/gm1
A MOSFET Opamp with an N-MOS Dfferential Pair
M2 M1 Vbb Vin CL M4 M3 Vyy Vxx VDD VDD Vo<Vxx+|Vt3| flip up-down
Recall Lecture 17 MOSFET DC Analysis
Types of Amplifiers Common source, input pairs, are transconductance
VDD M2 M1 Vbb Vin CL RL Vo VDD Vo Vb2
Common mode feedback for fully differential amplifiers
Common source output stage:
Differential Amplifier
ELECTRONIC CIRCUIT ANALYSIS
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
Folded cascode stage: summing current and convert to voltage
Differential Amplifier
VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5.
Ch. 5 – Operational Amplifiers
A general method for TF It’s systematic Uses Mason’s formula
Common-Collector (Emitter-Follower) Amplifier
Common-Collector (Emitter-Follower) Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Common-Collector (Emitter-Follower) Amplifier
Ch. 5 – Operational Amplifiers
BLM Circuit Theory Prof. Dr. Nizamettin AYDIN
Recall Last Lecture Introduction to BJT Amplifier
Presentation transcript:

Miller equivalent circuit I2 =Y(V2-V1) =Y(V2+V2/A) =(1+1/A)YV2  Y2=(1+1/A)Y Y I1=I=Y(V1-V2) =Y(V1+AV2) =(1+A)YV1 Y1=(1+A)Y

The above is proven by assuming constant A. But in reality, A depends on Y and connection. Correct use of Miller is quite tricky!

v2 = -Av1 v2 Agm1R2 This is for DC.

But this is missing the positive zero: z1 = +gm1/Cgd1 v1/vin=1/(1+sRs(Cgs1+(1+gm1R2 )Cgd1)) vo/v1= -gm1/(G2 + s(C2 +Cgd1)) Multiply: vo/vin= -gm1/{(G2 + s(C2 +Cgd1))(1+sRs(Cgs1+(1+gm1R2 )Cgd1))} But this is missing the positive zero: z1 = +gm1/Cgd1  Cgd1 A better approach: first set Rs=0, find TF from gate to vo, as we did before; then use Miller effect, find TF from vin to v1 (left circuit); then multiply together to get TF from vin to vo.  vo/vin = (sCgd1 -gm1)/{(G2 + s(C2 +Cgd1))(1+sRs(Cgs1+(1+gm1R2 )Cgd1))}

Zero value time constant: If a TF=n(s)/d(s) has only real poles d(s)=(1+t1s)(1+t2s)(1+t3s)… =1+(t1+t2+t3+…)s + (t1t2+t2t3+…)s2+… For low frequency, s small, we have d(s)  1+(t1+t2+t3+…)s Hence the lowest freq pole is approximately p1  -1/(t1+t2+t3+…) This only good for low freq, and real poles.

Application: Perform series/parallel simplification For each remaining capacitor Ci, find resistance Ri it sees by: short V-source, open I-source, open other caps, and compute R teff = R1C1+R2C2+…

C2 is CL||Cdb1||Cdb2 R2 is rds1||rds2 Cgs1 sees Rs, C2 sees R2 For Cgd1, more complex.

Resistance seen by Cgd1 can be found by applying a test v3 across Cgd1, finding the resulting current i3, and using R3=v3/i3 R3 = R2 + (1+gm1R2)*Rs teff=RsCgs1+R2C2+R2Cgd1+ (1+gm1R2)*RsCgd1

For a differential amplifer: vin+=vic+vid/2, vin-=vic-vid/2 As vid change, Vs=const Vs is virtual ground. left half = -(right half) Can use half circuit: M2 vin- CL M8 M1 vin+ M7 Vyy vo+ vo- Vs VDD VDD VDD Vyy M7 R,C vo+ vo+ CL CL M1 M1 Can further use quarter circuit for analysis with suitable parasitic R, C:

VDD VDD Telescopic cascode amplifier Quarter circuit: M7 M5 Vyy Vxx M8 M6 VDD M3 M1 Vbb Vin CL Rb Vo vo- vo+ CL M3 M4 Vbb CL M1 M2 vin+ vin- Vs

VDD VDD VDD Vo Vb3 folded cascode amp Vb2 Vb2 Vb3 Vin+ Vin- CL Vb4 Vb1 Vb5 Quarter circuit

Both have the same small signal model VDD M3 M1 Vbb Vin CL Rb Vo VDD Vo Vb3 Both have the same small signal model

a a >1 First take Rs = 0, find TF from vg1 to vo then from TF from vin to vg1, Finally, multiply the two together. Include gs2 Include Cgs2, Cdb1, Csb2 Include ro of I-source if folded a a >1 vg1/vin =1/(1+sRsaCgs1)

To find TF from vg1 to vo: Write KCL at vs, KCL at vo, Two equations, eliminate vs, and solve for vo in terms of vg1  vo/vg1

ro  rds1*Av2 || RL Av(0)  - gm1ro p1 = - w-3dB = -1/roCout GBW = gm1/Cout z1 = +gm1/Cgd1 p2  -1/{(rds1|| rincg)Cs2} p3  -1/RsaCgs1

Design steps: SR, CL  IQ OSR  Veff ranges Ibias or Iref  size current source GBW, CL  gm IQ, gm  (W/L)1, round to nice numbers Feedback to generate VinQ Check Veff, if too large, increase W1, (this leads to over design of gm and GBW) Check Av or ro, if not sufficient, use larger L, and adjust W accordingly to keep the same W/L For cascode structures, modify the steps a little.