軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  2010.10.07.

Slides:



Advertisements
Similar presentations
Structure of Resonance and Continuum States Hokkaido University Unbound Nuclei Workshop Pisa, Nov. 3-5, 2008.
Advertisements

Unstable Nuclei and Many-Body Resonant States Unstable Nuclei and Many-Body Resonant States Kiyoshi Kato Nuclear Reaction Data Centre, Faculty of Science,
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Spectroscopy at the Particle Threshold H. Lenske 1.
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
理研.08 少数体系アプローチの研究と今後の課題 Few-Body Approach and Future Problems ・ NN interaction is characterized by strong short-range repulsion and long-range tensor.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 6,7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
What is a resonance? K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (1)
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Fusion of light halo nuclei
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Pairing Correlation in neutron-rich nuclei
Complex-energy shell model description of light nuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Open quantum systems.
Triple-α reactions at low temperatures
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
Nuclear Structure Tools for Continuum Spectroscopy
Structure of few-body light Λ hypernuclei
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic mean field theory and chiral symmetry for finite nuclei
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Nuclear excitations in relativistic nuclear models
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Di-nucleon correlations and soft dipole excitations in exotic nuclei
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Jost関数法と共鳴部分幅および仮想状態
R. Lazauskas Application of the complex-scaling
Nicolas Michel (ESNT/SPhN/CEA) Kenichi Matsuyanagi (Kyoto University)
Osaka Institute of Technology
Presentation transcript:

軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  2010.10.07

Outline Structures of He isotopes “core+valence neutrons” with complex scaling Results 7He (a+3n) , 8He (a+4n) Tensor correlation in 4,5,6He using “TOSM” TM, K. Kato, K. Ikeda PRC76 (2007) 054309 TM, K. Kato, H. Toki, K. Ikeda, PRC76 (2007) 024305 TM, R. Ando, K. Kato PRC80 (2009) 014315 TM, R. Ando, K. Kato PLB691(2010)150 TM, H. Toki, K. Ikeda PTP121(2009)511

11Li Nuclear Chart Observation of halo structure in 11Li I.Tanihata et al. PRL55(1985)2676. 3 3

Characteristics of He isotopes (expt.) 4-body resonance 5-body resonance 3-body resonance Halo Skin Cf. TUNL Nuclear Data Evaluation Golovkov et al., PLB672(2009)22 4 4 4

Method (4He) Cluster Orbital Shell Model (COSM) Complex Scaling Method Open channel effect is included. – 8He : 7He+n, 6He+2n, 5He+3n, ... Complex Scaling Method Resonances with correct boundary condition as “Gamow states” Give continuum level density (resonance+continuum) E=Er- iG/2 (4He) Y. Suzuki, K. Ikeda, PRC38(1988)410, H. Masui, K. Kato, K. Ikeda, PRC73(2006)034318 5 S. Aoyama, T. Myo, K. Kato, K. Ikeda, PTP116(2006)1 (review)

Cluster Orbital Shell Model System is obtained based on RGM equation valence neutron number i : configuration index  No explicit tensor correlation , Gaussian expansion Orthogonarity Condition Model (OCM) is applied. Remove Pauli Forbidden states (PF) 6

Hamiltonian (4He) V4He-n : microscopic KKNN potential phase shifts of 4He+n scattering Vn-n : Minnesota potential with slightly strengthened Fit 6He(0+) (4He) A. Csoto, PRC48(1993)165. K. Arai, Y. Suzuki and R.G. Lovas, PRC59(1999)1432. TM et al. PTP113(2005)763. TM, S. Aoyama, K. Kato, K. Ikeda, PRC63(2001)054313

Completeness relation Complex scaling for 3-body case Completeness relation B.G. Giraud, K. Kato, A. Ohnishi J. Phys. A 37 (‘04)11575 T. Berggren, NPA109(’68)265. J.Aguilar and J.M.Combes, Commun. Math. Phys.,22(’71)269. E.Balslev and J.M.Combes, Commun. Math. Phys.,22(’71)280. 8

Schrödinger Eq. and Wave Func. in CSM Asymptotic Condition in CSM State No scaling Scaling Bound Resonance Continuum

Treatments of the unbound states in CSM i: configuration index Gaussian expansion Exact asymptotic condition for resonances Discretize continuum states. cf. Continuum Discretized Coupled Channel (CDCC) calculation by Kyusyu Group 10

Spectrum of 6He with 4He+n+n model Eth(4He+n+n) 4He+n+n 6He(*) 5He+n A. Csoto, PRC49 (‘94) 3035, S. Aoyama et al. PTP94(’95)343, T. Myo et al. PRC63(’01)054313 11

He isotopes : Expt vs. COSM (4He:(0s)4) 3-body resonance 4-body resonance 5-body resonance a TM, K.Kato, K.Ikeda PRC76(’07)054309 TM, R.Ando, K.Kato PRC80(’09)014315 TM, R.Ando, K.Kato, PLB691(‘10)150 12 12 12 12 TUNL Nuclear Data Evaluation

Matter & Charge radii of 6,8He [fm] Expt Theor Rm Rch I. Tanihata et al., PLB289(‘92)261 G. D. Alkhazov et al., PRL78(‘97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1(‘05)215. P. Mueller et al., PRL99(2007)252501 13

6He=4He+n+n with ACCC+CSM Eth(4He+n+n) soft dipole resonance in 6He (1−). E=(3.02i15.6) MeV ACCC: Analytical Continuation in Coupling Constant (Niigata group) Large decay width is obtained. S. Aoyama (Niigata) PRC68(’03)034313 14

Continuum Level Density in CSM S. Shlomo, NPA539(’92)17 K. Arai and A. Kruppa, PRC60(’99)064315 R. Suzuki, T. Myo and K. Kato, PTP113(’05)1273. CLD in CSM (Kinetic) 15

4He+n scattering with complex scaling Energy eigenvalues P3/2 scattering phase shift 30 Gaussian basis functions 16

4He+n scattering with discretized continuum Energy eigenvalues measured from Eth(4He+n) Phase shifts (s,p-waves) R. Suzuki, T. Myo and K. Kato, PTP113(’05)1273.

Strength function in CSM Bi-orthogonal relation Green’s function and Response function 18 T. Berggren, NPA109(’68)265, T. Myo, A. Ohnishi and K. Kato, PTP99(’98)801

E1 of 6He into 4He+n+n (3-body breakup) Energy eigenvalues E1 transition

Coulomb breakup strength of 6He E1+E2 Equivalent photon method TM, K.Kato, S. Aoyama and K.Ikeda PRC63(2001)054313. Kikuchi, TM, Takashina, Kato, Ikeda PTP122(2009)499 PRC81 (2010) 044308 6He : 240MeV/A, Pb Target (T. Aumann et.al, PRC59(1999)1252) 20

Coulomb breakup strength of 11Li No three-body resonance E1 strength by using the Green’s function method +Complex scaling method +Equivalent photon method (TM et al., PRC63(’01)) T.Myo, K.Kato, H.Toki, K.Ikeda PRC76(2007)024305 Expt: T. Nakamura et al. , PRL96,252502(2006) Energy resolution with    =0.17 MeV.

7He (unbound) : Expt vs. Complex Scaling Experiments TM, K.Kato, K.Ikeda PRC76(’07)054309 22 22 22 22 4-body resonance complex scaling

Experiments of 7He a) RIKEN p(8He,d)7He A. A. Korsheninnikov et al., PRL82(1999)3581. b) Berlin 9Be(15N,17F)7He G. Bohlen et al. ,PRC64(2001)024312. c) GSI 8He breakup M. Meister et al., PRL88(2002)102501. d) ANL 2H(6He, p)7He at 11.5 MeV/u A. H. Wuosmaa et al., PRC72(2005) 061301. e) SPIRAL p(8He,d)7He F. Skaza et al., PRC73(2006)044301. f) KVI, 7Li(d,2He)7He N. Ryezayeva et al., PLB639(2006)623. 23

S-factor of 6He-n component in 7He Bi-orthogonal relation T. Berggren, NPA109(1968)265 TM, K.Kato, K.Ikeda, PRC76(2007)054309 Weak coupling of 6He(0+)+n(p1/2) 6He(halo) 7He(Jp) 24 24

complete set of (A-1) SYSTEM One-neutron removal strength in CSM Bi-orthogonal relation Strength function and response function energy of (A-1) SYSTEM Response function complete set of (A-1) SYSTEM Complex scaled-Green’s function T. Berggren, NPA109(’68)265, T. Myo, A. Ohnishi and K. Kato, PTP99(’98)801 25 25 S.Aoyama, TM, K.Kato, K.Ikeda, PTP116(2006)1 (review)

One-neutron removal strength of 7HeGS TM, Ando, Kato PRC80(2009)014315 ” 4He+n+n” complete set using CSM 7He(3/2−) n−1 6He(*) 5He+n 4He+n+n 4He+2n 2+1 26 26

Energy spectrum 8He with complex scaling 32000 dim. Full diagonalization of complex matrix @ SX8R of NEC TM, R.Ando, K.Kato, PLB691(‘10)150 27

a 8He : 0+1 & 0+2 states lj 0+1 0+2 0+1 : (p3/2)4 ~ 87% sum=4 0+2 : (p3/2)2(p1/2)2 ~ 96%

a 8He : 0+1 & 0+2 states Jp 0+1 0+2 (p3/2)4 0+ : 2+ = 1 : 5 Cf. AMD by Kanada-En’yo a,b : orbit 0+1 a 0+2 Jp (p3/2)4 0+ : 2+ = 1 : 5 (p3/2)2(p1/2)2 0+ : 1+ : 2+ = 2 : 1.5 : 2.5 sum=4C2=6

Monopole Strength of 8He (Isoscalar) 0+2 6He+2n Spin flip : p3/2 → p1/2 CSM q=20 deg. 4He+4n 7He+n 30

Monopole Strength of 8He (Isoscalar) 7He+n 0+2 6He+2n Spin flip : p3/2 → p1/2 CSM q=20 deg. 4He+4n 7He+n 31

Summary Cluster Orbital Shell Model + Complex Scaling (Level density) Coulomb breakups of 6He and 11Li 7He : Importance of 6He(2+1) resonance 8He : Five-body resonances Differences between 0+1 and 0+2 Monopole strength : 8He → 7He+n → 6He+n+n Cf: Coulomb breakup, Iwata et al. PRC62 (2000) 064311 32

2n density in 6He Y. Kikuchi a Dineutron a Lowest config. Cigar a

6He(t,p)8He reaction (2n transfer) PLB672(2009)22, JINR, Dubna 0+2