Lecture 18 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.

Slides:



Advertisements
Similar presentations
Unit 3: Probability 3.1: Introduction to Probability
Advertisements

Aim: What are ‘Or’ Probabilities?
Probability Presented by Tutorial Services The Math Center.
Beginning Probability
Probability Probability Principles of EngineeringTM
Probability: Mutually Exclusive Events 1. There are 3 red, 4 black and 5 blue cubes in a bag. A cube is selected at random. What is the probability of.
Probability Key. You are given a standard deck of 52 playing cards, which consists of 4 suits: diamonds, hearts, clubs, and spades. Each suit has 13 cards.
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Probability Ch 14 IB standard Level.
Whiteboardmaths.com © 2004 All rights reserved
Quit Introduction Cards Combining Probabilities.
Index Student Activity 1: Questions to familiarise students with the
Pick Me. Basic Probability Population – a set of entities concerning which statistical inferences are to be drawn Random Sample – all member of population.
1 Press Ctrl-A ©G Dear2009 – Not to be sold/Free to use Tree Diagrams Stage 6 - Year 12 General Mathematic (HSC)
Basic Terms of Probability Section 3.2. Definitions Experiment: A process by which an observation or outcome is obtained. Sample Space: The set S of all.
7 Probability Experiments, Sample Spaces, and Events
Mathematics.
Section 2 Union, Intersection, and Complement of Events, Odds
Union, Intersection, Complement of an Event, Odds
Describing Probability
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
Chapter 4 Using Probability and Probability Distributions
1 Counting Rules. 2 The probability of a specific event or outcome is a fraction. In the numerator we have the number of ways the specific event can occur.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 4-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
1 Counting Rules. 2 The probability of a specific event or outcome is a fraction. In the numerator we have the number of ways the specific event can occur.
CHAPTER 6: RANDOM VARIABLES AND EXPECTATION
Probability.
Compound Probability Pre-AP Geometry. Compound Events are made up of two or more simple events. I. Compound Events may be: A) Independent events - when.
College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson.
College Algebra Sixth Edition James Stewart Lothar Redlin Saleem Watson.
S.CP.A.1 Probability Basics. Probability - The chance of an event occurring Experiment: Outcome: Sample Space: Event: The process of measuring or observing.
Section 11.4 Tree Diagrams, Tables, and Sample Spaces Math in Our World.
Probability The calculated likelihood that a given event will occur
UNIT 6 – PROBABILITY BASIC PROBABILITY. WARM UP Look through your notes to answer the following questions Define Sample Set and describe the sample set.
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
Review Homework pages Example: Counting the number of heads in 10 coin tosses. 2.2/
Section 2 Union, Intersection, and Complement of Events, Odds
Dr. Fowler AFM Unit 7-8 Probability. Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.
Binomial Distribution
SECTION 11-2 Events Involving “Not” and “Or” Slide
12.1/12.2 Probability Quick Vocab: Random experiment: “random” act, no way of knowing ahead of time Outcome: results of a random experiment Event: a.
Do Now. Introduction to Probability Objective: find the probability of an event Homework: Probability Worksheet.
The Most Interesting Statistics From 2014 | RealClearMarkets On average, children run a mile 90 seconds slower than their counterparts 30 years ago. Nine.
PROBABILITY References: Budiyono Statistika untuk Penelitian: Edisi Kedua. Surakarta: UNS Press. Spigel, M. R Probability and Statistics.
Math 145 September 18, Terminologies in Probability  Experiment – Any process that produces an outcome that cannot be predicted with certainty.
No Warm-Up today. You have a Quiz Clear your desk of everything but a calculator and something to write with.
Warm Up 1. Gretchen is making dinner. She has tofu, chicken and beef for an entrée, and French fries, salad and corn for a side. If Ingrid has 6 drinks.
Warm Up 1. Ingrid is making dinner. She has tofu, chicken and beef for an entrée, and French fries, salad and corn for a side. If Ingrid has 6 drinks to.
Chapter 10 PROBABILITY. Probability Terminology  Experiment: take a measurement Like flipping a coin  Outcome: one possible result of an experiment.
1 What Is Probability?. 2 To discuss probability, let’s begin by defining some terms. An experiment is a process, such as tossing a coin, that gives definite.
Virtual University of Pakistan Lecture No. 18 of the course on Statistics and Probability by Miss Saleha Naghmi Habibullah.
Terminologies in Probability
What Is Probability?.
Copyright © 2016, 2013, and 2010, Pearson Education, Inc.
Math 145 September 25, 2006.
Warm Up 1. Gretchen is making dinner. She has tofu, chicken and beef for an entrée, and French fries, salad and corn for a side. If Ingrid has 6 drinks.
Probability.
Warm Up Which of the following are combinations?
Terminologies in Probability
Terminologies in Probability
Terminologies in Probability
Combination and Permutations Quiz!
Terminologies in Probability
Pencil, red pen, highlighter, GP notebook, textbook, calculator
Math 145 June 26, 2007.
Terminologies in Probability
Math 145 February 12, 2008.
Terminologies in Probability
Presentation transcript:

Lecture 18 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics

Review of Previous Lecture In last lecture we discussed: Describing a Frequency Distribution Introduction to Probability Definition and Basic concepts of probability 2

Objectives of Current Lecture In the current lecture: Definition of Probability and its properties Some basic questions related to probability Laws of probability More examples of probability 3

Probability Probability of an event A: Let S be a sample space and A be an event in the sample space. Then the probability of occurrence of event A is defined as: P(A)=Number of sample points in A/ Total number of sample points Symbolically, P(A)=n(A)/n(S) Properties of Probability of an event: P(S)=1 for the sure event S For any event A, If A and B are mutually exclusive events, then P(AUB)=P(A)+P(B) 4

Probability: Examples Example: A fair coin is tossed once, Find the probabilities of the following events: a) An head occurs b) A tail occurs Solution: Here S={H,T}, so, n(S)=2 Let A be an event representing the occurrence of an Head, i.e. A={H}, n(A)=1 P(A)=n(A)/n(S)=1/2=0.5 or 50% Let B be an event representing the occurrence of a Tail, i.e. B={T}, n(B)=1 P(B)=n(B)/n(S)=1/2=0.5 or 50%. 5

Probability: Examples Example: A fair die is rolled once, Find the probabilities of the following events: a) An even number occurs b) A number greater than 4 occurs c) A number greater than 6 occurs Solution: Here S={1,2,3,4,5,6}, n(S)=6 a). An even number occurs Let A=An even number occurs={2,4,6}, n(A)=3 P(A)=n(A)/n(S)=3/6=1/2=0.5 or 50% b). A number greater than 4 occurs Let B=A number greater than 4 occurs={5,6}, n(B)=2 P(B)=n(B)/n(S)=2/6=1/3= or 33.33% c). A number greater than 6 occurs Let C=A number greater than 6 occurs={}, n(C )=0 P(C)=n(C)/n(S)=0/6=0 or 0% 6

Probability: Examples Example: If two fair dice are thrown, what is the probability of getting (i) a double six? (ii). A sum of 11 or more dots? Solution: Here n(S)=36 Let A=a double six={(6,6)} n(A)=1 P(A)=1/36 Let B= a sum of 11 or more dots B={(5,6), (6,5), (6,6)}, n(B)=3 P(B)=3/36 7

Probability: Examples Example: A fair coin is tossed three times. What is the probability that: a) At-least one head appears b) More heads than tails appear c) Exactly two tails appear Solution: Here S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}, n(S)=8 a). At-least one head appears Let A=At-least one head appears={HHH, HHT, HTH, THH, HTT, THT, TTH}, n(A)=7 P(A)=n(A)/n(S)=7/8 b). More heads than tails appear Let B= More heads than tails appear ={HHH, HHT, HTH, THH}, n(B)=4 P(B)=n(B)/n(S)=4/8=1/2=0.5 or 50% c). Exactly two tails appear Let C=Exactly two tails appear={HTT, THT, TTH}, n(C )=3 P(C)=n(C)/n(S)=3/8 8

Probability: Examples 9

10

Probability: Examples Example: Six white balls and four black balls, which are indistinguishable apart from color, are placed in a bag. If six balls are taken from the bag, find the probability of getting three white and three black balls? Solution: Total number of possible equally likely outcomes are: Let A=three white and three black balls 11

Laws of Probability If A is an impossible event then P(A)=0 If A is complement of an event A relative to Sample space S then P(A)=1-P(A) 12 S A

Laws of Probability 13 S AB

Laws of Probability 14

Structure of a Deck of Playing Cards Total Cards in an ordinary deck: 52 Total Suits: 4Spades (), Hearts (), Diamonds (), Clubs () Cards in each suit: 13 Face values of 13 cards in each suit are: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King Clubs () Spades () Hearts () Diamonds () 15

Structure of a Deck of Playing Cards Honor Cards are: Ace, 10, Jack, Queen and King Face Cards are: Jack, Queen, King Popular Games of Cards are: Bridge and Poker 16

Probability: Card Example Example: If a card is drawn from an ordinary deck of 52 playing cards, find the probability that: a. It is a red cardb. Card is a diamond c. Card is a 10 d. Card is a king e. A face card Solution: Since total playing cards are 52, So, n(S)=52 a). A red Card Let A=A red card, n(A)=26, P(A)=n(A)/n(S)=26/52=1/2 b). Card is a diamond Let B= Card is a diamond, n(B)=13, P(B)=n(B)/n(S)=13/52=1/4 c). Card is a ten Let C=Card is a ten, n(C )=3, P(C)=n(C)/n(S)=4/52=1/13 d). Card is a King Let D=Card is a King, n(D )=4, P(D)=n(D)/n(S)=4/52=1/13 e). A face card Let E=A face card, n(E )=12, P(E)=n(E)/n(S)=12/52=3/13 17

Review Lets review the main concepts: Definition of Probability and its properties Some basic questions related to probability Laws of probability More examples of probability 18

Next Lecture In next lecture, we will study: Conditional probability Independent and Dependent Events Related Examples 19