C.Carilli (NRAO) Heidelberg 05

Slides:



Advertisements
Similar presentations
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Advertisements

Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction:
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
HI 21cm Signal from Cosmic Reionization IAU 2006, Long Wavelength Astrophysics Chris Carilli (NRAO) Ionized Neutral Reionized.
Cosmic reionization: The last frontier in observational cosmology Chris Carilli (NRAO) Notre Dame, March 31, 2010  Brief introduction to cosmic reionization.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Cosmic reionization: The last frontier in observational cosmology Chris Carilli (NRAO) Summer Student Lecture July 2010  Brief introduction to cosmic.
Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli, NRL, April 2008  Brief introduction to cosmic reionization.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR)
Moscow cm Cosmology Collaborators: Collaborators: Rennan Barkana, Stuart Wyithe, Matias Zaldarriaga Avi Loeb Harvard University.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
Cosmic Reionization Chris Carilli (M/NRAO) Vatican Summer School June 2014 I. Introduction: Cosmic Reionization  Concept  Cool gas in z > 6 galaxies:
SKA in context z=8 Fields of View 1deg^2 With Full Sensitivity at subarcsec resolution.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Epoch of Reionization last phase of cosmic evolution to be explored bench-mark in cosmic structure formation indicating the first luminous structures Cosmic.
Cosmic reionization and the history of the neutral intergalactic medium LANL Chris Carilli May 23, 2007  Current constraints on the IGM neutral fraction.
Ionized Neutral Reionized Update: HI 21cm cosmic reionization experiments Chris Carilli (NRAO) MPIA July 2008 Last phase of cosmic evolution to be explored.
Studying the gas, dust, and star formation in the first galaxies at cm and mm wavelengths Chris Carilli, KIAA-PKU reionization workshop, July 2008  QSO.
1 National Radio Astronomy Observatory – Town Hall AAS 211 th Meeting – Austin, Texas Science Synergies with NRAO Telescopes Chris Carill NRAO.
Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli April 3, 2007 MIT  Brief introduction to cosmic reionization.
Probing the neutral intergalactic medium during cosmic reionization using the 21cm line of hydrogen KIAA-PKU Summer School, Beijing, China Chris Carilli,
Future Science at cm wavelengths, Chicago II, Aug 2006, C.Carilli Major efforts: EVLA I+II, ATA… Three year process: Quantified ‘experiments’ for future.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) Cool Univ.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Radio astronomical probes of the 1 st galaxies Chris Carilli, Aspen, February 2008  Current State-of-the-Art: gas, dust, star formation in QSO host galaxies.
C.Carilli, AUI Board October 2006 ISAC-run three year process: Quantified ‘experiments’ for future large area cm telescopes 50 chapters, 90 authors, 25%
ESO Radio observations of the formation of the first galaxies and supermassive black holes Chris Carilli (NRAO) Keck Institute, August 2010 Current State-of-Art:
Probing the dark ages with a lunar radio telescope Chris Carilli, Feb 2008 Dark Ages 15 < z < 200 Reionization 6 < z < 15 last phase of cosmic evolution.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Santa Fe Chris Carilli July 17, 2007
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) CfA Sept.
Cosmic ‘Background’Radiation Franceschini The Gunn Peterson Effect Fan et al 2003 z=6.3 z=5.80 z=5.82 z=5.99 z=6.28 Cosmic reionization at z =6.3.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
ESO Radio observations of the formation of the first galaxies and supermassive Black Holes Chris Carilli (NRAO) Notre Dame Astrophysics March 30, 2010.
ESO The other side of galaxy formation: radio line and continuum ‘Great Surveys’ Santa Fe November 2008 Chris Carilli NRAO.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) NNIW Dec.
Galaxy Evolution and WFMOS
Dust, cool gas, and star formation in z>6 SMBH host galaxies
Purple Mountain Observatory, May 2010
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
ALMA studies of the first galaxies
First galaxies: cm/mm observations Carilli (NRAO)
Xiaohui Fan University of Arizona June 21, 2004
SKA KSP: probing cosmic reionization and the first galaxies
1st galaxies: cm/mm observations – fuel for galaxy formation
ALMA: Imaging the cold Universe
Giant Clouds and Star Clusters in the Antennae
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
HI 21cm Tomography of IGM: freq ~ 100 to 200 MHz
A Proposed VLA Band MHz Pathfinder Study for the EOR L
Radio observations of dust and cool gas in the first galaxies
ALMA: Imaging the cold Universe
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Evolution of radio telescopes (Braun 1996)
Recovery of The Signal from the Epoch of Reionization
Chris Carilli (NRAO) AAS06 NRAO 50th.
Observing Molecules in the EoR
Open Discussion 1 KIAA/PKU Reionization
ALMA: Resolving (optically) obscured galaxy formation
Presentation transcript:

C.Carilli (NRAO) Heidelberg 05 History of IGM F(HI) = 0 C.Carilli (NRAO) Heidelberg 05 F(HI) = 1 Epoch of Reionization (EoR) last phase of cosmic evolution to be tested bench-mark in cosmic structure formation indicating the first luminous structures F(HI) = 1e-5

=> opaque at l_obs<0.9mm The Gunn Peterson Effect z=5.80 z=5.82 z=5.99 z=6.28 End of reionization f(HI) > 0.001 at z = 6.3 => opaque at l_obs<0.9mm Fan et al 2003

Near-edge of reionization: GP Effect Fairly Fast: f(HI) > 1e-3 at z >= 6.3 (0.87Gyr) f(HI) < 1e-4 at z <= 5.7 (1.0 Gyr) Although cf. Songaila, Oh, Stern, Malhotra… Fan + 2005; White + 2005

Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM Neutral IGM evolution (Gnedin 2004): ‘Cosmic Phase transition’ at z=6 to 7 8 Mpc (comoving) Normalization: GP absorption, LCDM + z=4 LBGs, T_IGM

WMAP Large scale polarization of CMB (Kogut et al.) CMB Temperature fluctuations imprinted by primordial density fluctuations at last scattering (z=1000) Large scale polarization: Thompson scattering at EoR t_e = 0.17 => F(HI) < 0.5 at z=17 20deg

GP + CMB => ‘complex’ reionization extending from z=20 to 6? Limitations of current measurements: CMB polarization: -- t_e = Ln_es_e = integral measure through universe => allows many reionization scenarios Gunn-Peterson effect: -- t_Lya >>1 for f(HI)>0.001 -- High z universe is opaque at (observed) optical wavelengths  Reionization occurs in ‘twilight zone’, observable at near-IR through radio wavelengths

CMB: large scale polarization + secondary anisotropies Radio astronomical probes of the Epoch of Reionization and the 1st luminous objects CMB: large scale polarization + secondary anisotropies Objects within EoR – Molecular gas, dust, star formation, process of reionization Neutral IGM – HI 21cm emission and absorption Collaborators USA – Carilli, Walter, Fan, Strauss, Owen, Gnedin, Lo Euro – Bertoldi, Cox, Menten, Omont, Beelen SKA Key Program science team– Briggs, Carilli, Furlanetto, Rawlings Science with the Square Kilometer Array (NAR, Carilli & Rawlings) http://www.skatelescope.org/pages/page_astronom.htm

IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields  dust IRAM PdBI: sub-mJy sens at 90 and 230 GHz + arcsec resol. mol. gas VLA: uJy sens at 1.4 GHz  star formation VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol.  mol. gas (low order)

L_FIR = 4e12 x S_250(mJy) L_sun SFR = 1e3 x S_250 M_sun/yr FIR = 1.6e12 L_sun Magic of (sub)mm: distance independent method of studying objects in universe for z=0.8 to 8 L_FIR = 4e12 x S_250(mJy) L_sun SFR = 1e3 x S_250 M_sun/yr Radio-FIR (Yun+ 02)

High Redshift QSOs: SDSS, DPSS (Fan 2005) z>4: 950 known z>5: 52 z>6: 8 30 at z~6 expected in the whole survey M_B < -26 => L_bol > 1e14 L_sun M_BH > 1e9 M_sun

QSO host galaxies – M_BH – s relation Most (all?) low z spheroidal galaxies have SMBH: M_BH=0.002M_bulge ‘Causal connection between SMBH and spheroidal galaxy formation’ (Gebhardt et al. 2002)? Luminous high z QSOs have massive host galaxies (1e12 M_sun)

MAMBO surveys of z>2 DPSS+SDSS QSOs 1e13L_sun 1048+46 z=6.2 Arp220 30% of luminous QSOs have S_250 > 2 mJy, independent of redshift from z=1.5 to 6.4 L_FIR =1e13 L_sun = 0.1 x L_bol: Dust heating by starburst or AGN?

Telescope time: t(dust) = 1hr, t(CO) = 10hr L_FIR vs L’(CO) High-z sources 1e3 M_sun/yr Index=1 1e11 M_sun Index=1.7 M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) Telescope time: t(dust) = 1hr, t(CO) = 10hr

VLA detections of HCN 1-0 emission n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3) index=1 Solomon et al z=2.58 70 uJy

Objects within EoR: QSO 1148+52 at z=6.4 highest redshift quasar known L_bol = 1e14 L_sun central black hole: 1-5 x 109 Msun (Willot etal.) clear Gunn Peterson trough (Fan etal.)

Cosmic (proper) time 1/16 T_univ = 0.87Gyr

1148+52 z=6.42: Dust and Gas detection M(H_2) = 2e10 M_sun L_FIR = 1.2e13 L_sun, M_dust =7e8M_sun Off channels Rms=60uJy 46.6149 GHz CO 3-2 S_250 = 5.0 +/- 0.6 mJy Dust formation: 1.4e9yr (AGB winds) > t_univ (8.7e8yr) => dust formed in high mass stars? => silicate grains? C, O production (3e7 M_sun): few e8 yr => Star formation started early (z = 10)?

 Typical of starburst nuclei (eg. NGC253, Arp220) IRAM Plateau de Bure n2 (6-5) (7-6) (3-2) Tkin=100K, nH2=105cm-3 FWHM = 305 km/s z = 6.419 +/- 0.001  Typical of starburst nuclei (eg. NGC253, Arp220)

VLA imaging of CO3-2 at 0.4” and 0.15” resolution rms=50uJy at 47GHz Separation = 0.3” = 1.7 kpc T_B = 20K  Typical of starburst nuclei Merging galaxies? CO extended to NW by 1” (=5.5 kpc) tidal(?) feature

Stellar spheroid formation in few e7 yrs = e-folding time for SMBH 1148+5251: radio-FIR SED Beelen et al. S_1.4= 55 +/- 12 uJy 1048+46 T_D = 50 K Star forming galaxy characteristics: radio-FIR SED, Gas/Dust, CO excitation and T_B => Coeval starburst/AGN? SFR = 1e3 M_sun/yr Stellar spheroid formation in few e7 yrs = e-folding time for SMBH => Coeval formation of galaxy/SMBH at z = 6.4 ?

M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun 1148+52: Masses M(dust) = 7e8 M_sun M(H_2) = 2e10 M_sun M_dyn (r=2.5kpc) = 5e10 M_sun M_BH = 3e9 M_sun => M_bulge = 1.5e12 M_sun Gas/dust = 30, typical of starburst Dynamical vs. gas mass => baryon dominated? Dynamical vs. ‘bulge’ mass => M – s breaks-down at high z? [SMBH forms first?]

Cosmic Stromgren Sphere Accurate redshift from CO: z=6.419+/0.001 Ly a, high ioniz Lines: inaccurate redshifts (Dz > 0.03) Proximity effect: photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 ‘time bounded’ Stromgren sphere: R = 4.7 Mpc t_qso= 1e5 R^3 f(HI)= 1e7yrs

Loeb & Rybicki 2000

<Dz> = 0.08 => <R> = 4.4 Mpc z>6 QSOs with MgII and/or CO redshifts (Wyithe et al. 05) <Dz> = 0.08 => <R> = 4.4 Mpc

Constraints on neutral fraction at z=6.4 ? GP => f(HI) > 0.001 If f(HI) = 0.001, then t_qso = 1e4 yrs – implausibly short given QSO fiducial lifetimes (1e7 years)? Probability arguments suggest: f(HI) > 0.1 P(>x_HI) 10% Wyithe et al. 2005 90% probability x(HI) > curve t_qso/1e7 yrs

Near-edge of reionization: GP + Cosmic Stromgren Spheres Very Fast? f(HI) > 1e-1 at z > 6.4 (0.87Gyr) f(HI) < 1e-4 at z < 5.7 (1.0 Gyr) See also Cosmic Stromgren Surfaces (Mesinger & Haiman 2004 but cf. Oh & Furnaletto 2005)

Molecular Gas and dust during the EoR FIR luminous galaxy at z=6.42: 1e13 Lsun observe dust, gas, star formation, AGN Sub-kpc imaging: Merging galaxy: M_gas= 2x1010 M_sun, M_dyn=6e10 M_sun Early enrichment of heavy elements and dust produced => star formation 0.4 Gyr after the big bang High z: Coeval formation of SMBH + stars and break-down of M-s at high z? Cosmic Stromgren sphere = 4.7 Mpc => ‘witnessing process of reionization’ t_qso = 1e7 * f(HI) yrs ‘fast’ reionization: f(HI)>0.1 at z=6.4?

(sub)mm: Dust, molecular gas Near-IR: Stars, ionized gas, AGN Continuum sensitivity of future arrays: Arp 220 vs z (FIR = 1.6e12 L_sun) cm: Star formation, AGN (sub)mm: Dust, molecular gas Near-IR: Stars, ionized gas, AGN

Studying the pristine IGM beyond the EOR: redshifted HI 21cm observations (100 – 200 MHz) with the Square Kilometer Array. ‘Pathfinders’: LOFAR, MWA, PAST, VLA-VHF,… SKA goal: mJy at 200 MHz Large scale structure: density, f(HI), T_spin

Low frequency background – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 100 (n/200 MHz)^-2.6 K Highly ‘confused’: 3 sources/arcmin^2 with S_0.2 > 0.1 mJy

Interference Ionospheric phase errors TIDs – ‘fuzz-out’ sources 100 MHz z=13 200 MHz z=6 Ionospheric phase errors TIDs – ‘fuzz-out’ sources ‘Isoplanatic patch’ = few deg = few km Phase variation proportional to wavelength^2 74MHz Lane 03

Global reionization signature in low frequency HI spectra (Gnedin & Shaver 2003) fast 21cm ‘deviations’ at 1e-4 wrt foreground double Spectral index deviations of 0.001

HI 21cm Tomography of IGM Zaldarriaga + 2003 9 7.6 DT_B(2’) = 10’s mK SKA rms(100hr) = 4mK LOFAR rms (1000hr) = 80mK

Power spectrum analysis Zaldarriaga + 2003 Z=10 129 MHz LOFAR SKA 2deg 1arcmin

Cosmic web before reionization: HI 21Forest Cosmic Web after reionization = Ly alpha forest (d <= 10) 1422+23 z=3.62 Womble 1996 N(HI) = 1e13 -- 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2 Cosmic web before reionization: HI 21Forest radio G-P (t=1%) 21 Forest (10%) mini-halos (10%) primordial disks (100%) expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy (Carlli,Jarvis,Haiman) z=12 z=8 20mJy 130MHz

‘Pathfinders’: PAST, LOFAR, MWA, VLA-VHF, … MWA prototype (MIT/ANU) LOFAR (NL) PAST (CMU/China) VLA-VHF (CfA/NRAO)

Leverage: existing telescopes, IF, correlator, operations VLA-VHF: 180 – 200 MHz Prime focus X-dipole Greenhill, Blundell (SAO Rx lab); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations $110K D+D/construction (CfA) First light: Feb 16, 05 Four element interferometry: May 05 First limits: Dec 05

Main Experiment: Cosmic Stromgren spheres around z=6 to 6 Main Experiment: Cosmic Stromgren spheres around z=6 to 6.5 SDSS QSOs (Wyithe & Loeb 2004) VLA-VHF 190MHz 250hrs 20 f(HI) mK 15’ VLA spectral/spatial resolution well matched to expected signal: 7’, 1000 km/s Set first hard limits on f(HI) at end of cosmic reionization (f(HI) < 0.3) Easily rule-out cold IGM (T_s < T_cmb): signal = 360 mK 0.50+/-0.12 mJy

Other Experiments: power spectrum analysis, ‘HI 21cm forest’ 2deg

System characteristics First sidelobe = 14% (goal < 5%) Efficiency = 28% (goal: 50%) Xpol = 20% (goal: 5%) T_sys = 50 (Rx) + 150 (sky) K FoV = 12 deg^2 rms/chan= 0.12mJy in 250 hrs (goal) Correlator: 0.8MHz/chan, 16 chan, 2 pol. 4deg 3C313 --first image

Main hurdle: Interference! Digital TV: 186 to 192MHz, 200 W from ABQ KNMD Ch 9 Digital TV

Radio astronomy – Probing the EoR ‘Twilight zone’:physics of 1st luminous sources (limited to near-IR to radio wavelengths) Currently limited to pathological systems (‘HLIRGs’) EVLA, ALMA 10-100x sensitivity is critical to study normal galaxies Low freq pathfinders: HI 21cm signatures of neutral IGM SKA imaging of IGM z=6.4

=> Solar Metalicity PKS 2322+1944 z=4.12: [CI] (492 GHz rest freq; Pety et al.) VLA CO2-1 PdBI => Solar Metalicity

GMRT 228 MHz – HI 21cm abs toward highest z radio galaxy, 0924-220 z=5 RFI = 20 kiloJy ! 8GHz 1” Van Breugel et al. rms/(40km/s chan) = 5 mJy 230Mhz point source = 0.55 Jy; z(CO)

Richards et al. 2002 SDSS QSOs 1000km/s => Dz = 0.03

J1048+4637: A second FIR-luminous QSO source at z=6.2 S_250 = 3.0 +/- 0.4 mJy=> L_FIR=7.5e12 L_sun VLA CO(3-2) z(opt) z(MgII) GBT/EVLA/ALMA/LMT correlator: 8–32 GHz, 16000 channels

Gunn-Peterson effect Barkana and Loeb 2001

Complex reionization example: Double reionization. (Cen 2002; cf Complex reionization example: Double reionization? (Cen 2002; cf. Furlanetto, Gnedin,…) Pop III stars in ‘mini-halos’ (<1e7 M_sun) ‘normal’ galaxies (>1e8M_sun) Recombination time < hubble time at z > 8 Stellar fusion produces 7e6eV/H atom, reionization requires 13.6eV/H atom =>Need to process only 1e-5 of baryons through stars to reionize the universe