D. Rieser *, R. Pail, A. I. Sharov

Slides:



Advertisements
Similar presentations
Impact of GOCE on lithospheric modelling in active plate margins ESA Living Planet Symposium 2013 Edinburgh, Michael Hosse (1), Roland Pail.
Advertisements

A Comparison of topographic effect by Newton’s integral and high degree spherical harmonic expansion – Preliminary Results YM Wang, S. Holmes, J Saleh,
ARCGICE WP 4.3 Recommendations for inclusion of GOCE data C.C.Tscherning & S.Laxon C.C.Tscherning, UCPH, S.Laxon, UCLA,
Microphone Array Post-filter based on Spatially- Correlated Noise Measurements for Distant Speech Recognition Kenichi Kumatani, Disney Research, Pittsburgh.
Determination of Gravity Variations in Northern Europe from GRACE Jürgen Müller, Matthias Neumann-Redlin Institut für Erdmessung, University of Hannover,
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
Positioning America for the Future NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic Survey On the Solutions of.
GRACE GRAVITY FIELD SOLUTIONS USING THE DIFFERENTIAL GRAVIMETRY APPROACH M. Weigelt, W. Keller.
COMBINED MODELING OF THE EARTH’S GRAVITY FIELD FROM GOCE AND GRACE SATELLITE OBSERVATIONS Robert Tenzer 1, Pavel Ditmar 2, Xianglin Liu 2, Philip Moore.
ARCGICE WP 1.4 ERROR ESTIMATES IN SPATIAL AND SPECTRAL DOMAINS C.C.Tscherning, University of Copenhagen,
ARCGICE WP 5.2 Plan for development of Atctic geoid using GOCE C.C.Tscherning, University of Copenhagen,
Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring Room A;
Use of G99SSS to evaluate the static gravity geopotential derived from the GRACE, CHAMP, and GOCE missions Daniel R. Roman and Dru A. Smith Session: GP52A-02Decade.
Multi-Processing Least Squares Collocation: Applications to Gravity Field Analysis. Kaas. E., B. Sørensen, C. C. Tscherning, M. Veicherts.
Error Analysis of the NGS Gravity Database Jarir Saleh, Xiaopeng Li, Yan Ming Wang, Dan Roman and Dru Smith, NOAA/NGS/ERT Paper: G , 04 July 2011,
Calibration in the MBW of simulated GOCE gradients aided by ground data M. Veicherts, C. C. Tscherning, Niels Bohr Institute, University of Copenhagen,
Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany Quality Assessment of GOCE Gradients Phillip Brieden, Jürgen Müller living planet.
1 Assessment of Geoid Models off Western Australia Using In-Situ Measurements X. Deng School of Engineering, The University of Newcastle, Australia R.
ESA Living Planet Symposium, Bergen, T. Gruber, C. Ackermann, T. Fecher, M. Heinze Institut für Astronomische und Physikalische Geodäsie (IAPG)
A spherical Fourier approach to estimate the Moho from GOCE data Mirko Reguzzoni 1, Daniele Sampietro 2 2 POLITECNICO DI MILANO, POLO REGIONALE DI COMO.
Hydrological mass changes inferred from high-low satellite- to-satellite tracking data Tonie van Dam, Matthias Weigelt Mohammad J. Tourian Nico Sneeuw.
Earth Observation from Satellites GEOF 334 MICROWAVE REMOTE SENSING A brief introduction.
ESA living planet symposium 2010 ESA living planet symposium 28 June – 2 July 2010, Bergen, Norway GOCE data analysis: realization of the invariants approach.
GOCE ITALY scientific tasks and first results Fernando Sansò and the GOCE Italy group.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
GOCE OBSERVATIONS FOR DETECTING UNKNOWN TECTONIC FEATURES BRAITENBERG C. (1), MARIANI P. (1), REGUZZONI M. (2), USSAMI N. (3) (1)Department of Geosciences,
1 Average time-variable gravity from GPS orbits of recent geodetic satellites VIII Hotine-Marussi Symposium, Rome, Italy, 17–21 June 2013 Aleš Bezděk 1.
Improved Hybrid Geoid Modeling and the FY 2000 Geoid Models Dr. Daniel R. Roman January 16, : :30 Conference Room 9836.
C.C.Tscherning, University of Copenhagen, Denmark. Developments in the implementation and use of Least-Squares Collocation. IAG Scientific Assembly, Potsdam,
Improved Covariance Modeling of Gravimetric, GPS, and Leveling Data in High-Resolution Hybrid Geoids Daniel R. Roman, Ph.D. Research Geodesist.
Data Requirements for a 1-cm Accurate Geoid
LEAST MEAN-SQUARE (LMS) ADAPTIVE FILTERING. Steepest Descent The update rule for SD is where or SD is a deterministic algorithm, in the sense that p and.
0 - 1 © 2007 Texas Instruments Inc, Content developed in partnership with Tel-Aviv University From MATLAB ® and Simulink ® to Real Time with TI DSPs Spectrum.
Progress in Geoid Modeling from Satellite Missions
Case study on heterogeneous geoid/ quasigeoid based on space borne and terrestrial data combination with special consideration of GOCE mission data impact.
Regional Enhancement of the Mean Dynamic Topography using GOCE Gravity Gradients Matija Herceg 1 and Per Knudsen 1 1 DTU Space, National Space Institute,
International Symposium on Gravity, Geoid and Height Systems GGHS 2012, Venice, Italy 1 GOCE data for local geoid enhancement Matija Herceg Per Knudsen.
IAG Scientific Assembly – Cairns, Australia, August 2005 The GOCE Mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) will be.
Full Resolution Geoid from GOCE Gradients for Ocean Modeling Matija Herceg & Per Knudsen Department of Geodesy DTU Space living planet symposium 28 June.
C.C.Tscherning, Niels Bohr Institute, University of Copenhagen. Improvement of Least-Squares Collocation error estimates using local GOCE Tzz signal standard.
Catherine LeCocq SLAC USPAS, Cornell University Large Scale Metrology of Accelerators June 27 - July 1, 2005 Height Systems 1 Summary of Last Presentation.
Airborne gravimetry: An Introduction Madjid ABBASI Surveying Engineering Department, Zanjan University, Zanjan, Iran National Cartographic Center (NCC)
CERN, BE-ABP (Accelerators and Beam Physics group) Jürgen Pfingstner Adaptive control scheme for the main linac of CLIC Jürgen Pfingstner 21 th of October.
Towards a standard model for present-day signals due to postglacial rebound H.-P. Plag, C. Kreemer Nevada Bureau of Mines and Geology and Seismological.
Bouman et al, GOCE Gravity Gradients, ESA Living Planet Symposium 2010 GOCE Gravity Gradients in Instrument and Terrestrial Frames J. Bouman, Th. Gruber,
ESA living planet symposium Bergen Combination of GRACE and GOCE in situ data for high resolution regional gravity field modeling M. Schmeer 1,
Improving Regional Geoid by optimal Combination of GRACE Gravity Model and Surface Gravity Data YM Wang, DR Roman and J Saleh National Geodetic Survey.
The Unscented Kalman Filter for Nonlinear Estimation Young Ki Baik.
Mayer-Gürr et al.ESA Living Planet, Bergen Torsten Mayer-Gürr, Annette Eicker, Judith Schall Institute of Geodesy and Geoinformation University.
ESA Living Planet Symposium 28 June - 2 July 2010, Bergen, Norway A. Albertella, R. Rummel, R. Savcenko, W. Bosch, T. Janjic, J.Schroeter, T. Gruber, J.
4.Results (1)Potential coefficients comparisons Fig.3 FIR filtering(Passband:0.005~0.1HZ) Fig.4 Comparison with ESA’s models (filter passband:0.015~0.1HZ)
The use of absolute gravity data for validation of GOCE-based GGMs – A case study of Central Europe 1), 2) Walyeldeen Godah 2) Jan Krynski 2) Malgorzata.
An oceanographic assessment of the GOCE geoid models accuracy S. Mulet 1, M-H. Rio 1, P. Knudsen 2, F. Siegesmund 3, R. Bingham 4, O. Andersen 2, D. Stammer.
Use of topography in the context of the GOCE satellite mission – some examples Moritz Rexer, Christian Hirt, Sten Claessens, Carla Braitenberg 5 th INTERNATIONAL.
Bouman et al, GOCE Calibration, ESA Living Planet Symposium 2010, Bergen, Norway Overview of GOCE Gradiometer Cal/Val Activities J. Bouman, P. Brieden,
Evaluation of the Release-3, 4 and 5 GOCE-based Global Geopotential Models in North America M. G. Sideris (1), B. Amjadiparvar (1), E. Rangelova (1), J.
D.N. Arabelos, M. Reguzzoni and C.C.Tscherning HPF Progress Meeting # 26, München, Feb , Global grids of gravity anomalies and vertical gravity.
ESA Living Planet Symposium, 29 June 2010, Bergen (Norway) GOCE data analysis: the space-wise approach and the space-wise approach and the first space-wise.
Astronomical Institute University of Bern 1 Astronomical Institute, University of Bern, Switzerland * now at PosiTim, Germany 5th International GOCE User.
1 UPWARD CONTINUATION OF DOME-C AIRBORNE GRAVITY AND COMPARISON TO GOCE GRADIENTS AT ORBIT ALTITUDE IN ANTARCTICA Hasan Yildiz (1), Rene Forsberg (2),
An overview of spectral methods for the optimal processing of satellite altimetry and other data I.N. Tziavos1, M.G. Sideris2, G.S. Vergos1, V.N. Grigoriadis1,
LECTURE 07: TIME-DELAY ESTIMATION AND ADPCM
Geodesy & Crustal Deformation
Hyperspectral Wind Retrievals Dave Santek Chris Velden CIMSS Madison, Wisconsin 5th Workshop on Hyperspectral Science 8 June 2005.
Chairs: H. Sünkel, P. Visser
TEST OF GOCE EGG DATA FOR SPACECRAFT POSITIONING
Principles of the Global Positioning System Lecture 11
NOAA Objective Sea Surface Salinity Analysis P. Xie, Y. Xue, and A
Martin Pitoňák1, Michal Šprlák2 and Pavel Novák1
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
Presentation transcript:

D. Rieser *, R. Pail, A. I. Sharov Refining regional gravity field solutions with GOCE gravity gradients for cryospheric investigations D. Rieser *, R. Pail, A. I. Sharov

Contents Introduction Gradients for regional Geoid computations Coping with noise Solution strategies Geoid computation Problems Summary D. Rieser et al., 30.06.2010

Introduction Background and motivation Project ICEAGE Arctic snow- and ice cover variations and relations to gravity Sharov et al.: Variations of the Arctic ice-snow cover in nonhomogenous geopotential (oral, 30.06.,11:40) Gisinger et al.: Ice mass change versus gravity-local models and GOCE's contribution (poster, 30.06, 16:00) D. Rieser et al., 30.06.2010

Introduction Contributions of GOCE to regional gravity field Gradients as in-situ observations Beneficial dense data distribution Combination with other data types terrestrial (gravity anomalies, e.g. ArcGP) gravity models (EGM2008) D. Rieser et al., 30.06.2010

Gradients for regional Geoid computations Least Squares Collocation Prediction Gravity quantity as functional of disturbing potential T Covariance function D. Rieser et al., 30.06.2010

Gradients for regional Geoid computations Approach following Tscherning (1993) Covariances as combination of base functions All covariances up to 2nd order derivatives of the disturbing potential (i.e. gradients) Advantage: Covariances can be rotated in arbitrary reference frame D. Rieser et al., 30.06.2010

Gradients for regional Geoid computations Characteristics of GOCE gradients observations Observations in Gradiometer Reference Frame (GRF) Assumption of uncorrelated gradients in GRF Gradients suffering from coloured noise Vxy and Vyz tensor components badly deteriorated Error PSD from ESA E2E-simulation (before GOCE launch) D. Rieser et al., 30.06.2010

Coping with noise Filtering of coloured noise by applying Wiener filter method (Migliaccio et al., 2004) Signal t consisting of signal s + noise n Wiener filter in spectral domain Filtered signal in time domain D. Rieser et al., 30.06.2010

Coping with noise Covariance function of the filter error Requirement: stationary signal (valid only in Local Orbit Reference Frame LORF) Problem: rotation of gradients from GRF to LORF unfavorable (Vxy, Vyz) D. Rieser et al., 30.06.2010

Solution strategies Strategy 1 Gradients in GRF Filtering in GRF not allowed in strict sense Cll rotated to GRF Cnn set up in GRF Csl for signals in Local North Oriented Frame (LNOF) and gradients in GRF D. Rieser et al., 30.06.2010

Solution strategies Strategy 2 Rotate gradient tensor to LORF a-priori replacement of less accurate tensor components with EGM Filtering in LORF Set up of Cnn in GRF and rotation to LORF a-priori covariance propagation for replaced components from EGM D. Rieser et al., 30.06.2010

Solution strategies Noise covariance propagation GRF  LORF GRF: uncorrelated gradient tensor components LORF: correlation through rotation D. Rieser et al., 30.06.2010

Geoid computation GOCE data: 01. November 2009 – 30. November 2009 Reduced up to D/O 49 by EGM2008 5 sec sampling Region: 53° – 79° E 73° – 78° N D. Rieser et al., 30.06.2010

Geoid computation Filtering of gradients Noise PSD Quicklook D. Rieser et al., 30.06.2010

Geoid computation Noise-free scenario: Vzz gradients simulated from EGM2008 on real orbit (D/O 50to250) EGM2008 reference LSC with Vzz Difference to EGM2008 reference Standard deviation D. Rieser et al., 30.06.2010

Geoid computation Geoid solution from real Vxx, Vyy and Vzz components Strategy 1 Strategy 2 Difference to reference Standard deviation D. Rieser et al., 30.06.2010

Geoid computation ‚Terrestrial‘ data Gravity anomalies simulated from EGM2008 (~ ArcGP) D/O 50 to 250 s = 3 mgal 0.25° X 0.25° grid Difference to reference Standard deviation D. Rieser et al., 30.06.2010

Geoid computation Combination of GOCE and terrestrial data Vxx, Vyy and Vzz gradients (filtered in GRF) Gravity anomalies (D/O 50 to 250, s = 3 mGal) Difference to reference Standard deviation D. Rieser et al., 30.06.2010

Geoid computation Difference to reference Standard deviation gradients only Dg only combined D. Rieser et al., 30.06.2010

Empirical and EGM2008 model covariance function for Dg (D/O 50 to 250) Problems Downward continuation of gradients unstable Ground data necessary Global covariance model Valid for Dg (ground) and gradients (GOCE altitude) Assumptions Strategy 1: Wiener filtering in non-stationary GRF Strategy 2: Noise-covariance information from a-priori Wiener filtering in GRF Replacement of real gradients with EGM information Empirical and EGM2008 model covariance function for VZZ (D/O 50 to 250) at h=245km Empirical and EGM2008 model covariance function for Dg (D/O 50 to 250) D. Rieser et al., 30.06.2010

Summary GOCE gravity gradients can be used as in-situ observations Reduction of noise by applying Wiener filtering Different solution strategies lead to similar results Assumptions inevitable Combination of GOCE gradients with terrestrial data improves the solution in medium wavelengths D. Rieser et al., 30.06.2010

D. Rieser *, R. Pail, A. I. Sharov Thank you for your attention D. Rieser *, R. Pail, A. I. Sharov