XFEL Oscillator in ERLs

Slides:



Advertisements
Similar presentations
Beam Dynamics in MeRHIC Yue Hao On behalf of MeRHIC/eRHIC working group.
Advertisements

1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
Does the short pulse mode need energy recovery? Rep. rateBeam 5GeV 100MHz 500MWAbsolutely 10MHz 50MW Maybe 1MHz 5MW 100kHz.
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Kwang-Je Kim ANL & U of C& POSTECH Workshop on Sciences Outlook and R&D Issues of X-ray FEL Oscillator February 14-15, 2013 POSCO International Center.
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
Low Emittance RF Gun Developments for PAL-XFEL
The Overview of the ILC RTML Bunch Compressor Design Sergei Seletskiy LCWS 13 November, 2012.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
1Matthias LiepeAugust 2, 2007 LLRF for the ERL Matthias Liepe.
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SRF Requirements and Challenges for ERL-Based Light Sources Ali Nassiri Advanced Photon Source Argonne National Laboratory 2 nd Argonne – Fermilab Collaboration.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
X-RAY LIGHT SOURCE BY INVERSE COMPTON SCATTERING OF CSR FLS Mar. 6 Miho Shimada High Energy Research Accelerator Organization, KEK.
ERHIC design status V.Ptitsyn for the eRHIC design team.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Performance of the cERL LLRF System Takako Miura (KEK) LLRF'15, Shanghai, Nov 4, 2015 (T. Miura) 1 Compact ERL (Energy Recovery LINAC)
Matthias Liepe. Matthias Liepe – High loaded Q cavity operation at CU – TTC Topical Meeting on CW-SRF
E. Schneidmiller and M. Yurkov FEL Seminar, DESY April 26, 2016 Reverse undulator tapering for polarization control at X-ray FELs.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Beam Commissioning Adam Bartnik.
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Sara Thorin, MAX IV Laboratory
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
Plans of XFELO in Future ERL Facilities
Status and Interest of the X-ray FEL SINAP
Beam-beam effects in eRHIC and MeRHIC
A compact, soft X-ray FEL at KVI
Joint Accelerator Research JGU & HZB
Gu Qiang For the project team
Junji Urakawa (KEK) for ATF International Collaboration
Accelerator Layout and Parameters
Review of Application to SASE-FELs
Free Electron Lasers (FEL’s)
The Cornell High Brightness Injector
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
ERL Main-Linac Cryomodule
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
Analysis of Multi-Turn ERLs for X-ray Sources
Capture and Transmission of polarized positrons from a Compton Scheme
ERL accelerator review. Parameters for a Compton source
CEPC Injector Damping Ring
VUV/Soft X-ray Oscillators
Advanced Research Electron Accelerator Laboratory
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Modified Beam Parameter Range
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
Laser Heater Integration into XFEL. Update.
Gain Computation Sven Reiche, UCLA April 24, 2002
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Comparison between 4K and 2K operation performance of CEBAF injector cryomodules Grigory Eremeev Monday, August 19, 2019.
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Update on ERL Cooler Design Studies
Presentation transcript:

XFEL Oscillator in ERLs R. Hajima Japan Atomic Energy Agency March 4, 2010.

X-ray FEL Oscillator Typical electron beam parameters for XFELO K-J. Kim et al., PRL (2008), PRST-AB (2009) Typical electron beam parameters for XFELO Energy, charge, emittance, repetition are similar to ERL beams. R. Hajima

ERL Injector Performance design example Ultimate Injector 8 pC, 0.1 mm-mrad will be feasibly obtained. 500-kV DC gun, 3-D pulse shaping, and 10-MeV SCA. 80 pC, 0.1 mm-mrad will be obtained. 750-kV DC gun, 3-D pulse shaping, and 10-MeV SCA. R. Hajima et al. Compact ERL CDR (2008) I.V. Bazarov et al., PRST-AB (2005) R. Hajima 3 3

Integration of XFELO and ERL Beam dump ERL Gun FEL Gun Location Operation mode straight section of the loop additional branch independent concurrent From the ERL side, XFELO adds a new feature with minor modification ERL and XFELO provides complimentary X-rays Injector share an ERL injector use a FEL injector R. Hajima 4 4

Growth of emittance and energy spread in a loop E=5 GeV, r=25m, “half arc” = TBA x 15 coherent SR for 20pC/2ps tuning of cell-to-cell phase advance  negligible emittance growth incoherent SR FEL gain is preserved energy spread after FEL lasing Energy recovery is preserved R. Hajima 5 5

XFELO lasing at 5-GeV? 0.1nm XFELO with a 5-mm gap Halbach-type undulator 7 GeV, lw=1.88cm, gap=5mm, aw=1  l=0.1nm 5 GeV, lw=1.43cm, gap=5mm, aw=0.59  l=0.1nm assuming same peak current and same mode area, 1-D gain for 5 GeV beam is “0.65 x 1-D gain for 7 GeV” further gain reduction due to the emittance effect. R. Hajima 6

XFELO with 5 and 7-GeV ERLs 0.3 1Å X-FELO analytical estimation of small-signal FEL gain Energy 5 GeV 7 GeV charge 20 pC  st 2 ps sE/E 1e-4 aw 0.59 1.0 lu 1.43 cm 1.88 cm Nu 3000 b*=ZR 10 m en 0.1 mm-mrad gain 14 % 22 % 0.25 7 GeV 0.2 small-signal FEL gain 0.15 0.1 5 GeV 0.05 0.1 0.15 0.2 0.25 0.3 normalized emittance (mm-mrad) The above calculations are based on a Halbach-type undulator. DELTA undulator gives 1.4 times larger FEL gain. R. Hajima

Velocity bunching in an ERL main linac Injector SCA #1 SCA #2 SCA #3 Velocity bunching for a SASE-FEL injector Velocity bunching for an ERL light source Velocity bunching for an X-FELO (1) no additional component is required (2) only 2-3% SCAs are used for the velocity bunching (3) residual energy spread is smaller than magnetic compression (4) moderate emittance growth for low bunch charge L. Serafini and M. Ferrario, AIP-Porc. (2001) H. Iijima, R. Hajima, NIM-A557 (2006). R. Hajima, N. Nishimori, FEL-2009 R. Hajima

Gain reduction by bandwidth mismatch K-J. Kim et al., PRL 100, 244802 (2008). growth rate of the m-th mode gain loss cavity length detuning bandwidth mismatch bandwidth of the Bragg mirrors = 12 meV 12 meV In the following calculations, we choose reflectivity and phase shift for a cavity round trip R. Hajima

Example of the velocity bunching st E Energy (MeV) bunch length (ps) z (m) velocity bunching 1 2 3 4 5 6 7 8 9 10 15 20 25 30 injector merger SCA #1 SCA #2 PARMELA simulation bunch charge q = 7.7 pC velocity bunching bunching in 8 cavities injection 10.9 MeV, 1.3 ps, -85 deg. gradient Eacc = 8.5 MV/m 4 cavities 4 cavities emittance growth by chromatic aberration 0.2 0.4 0.6 0.8 1 1.2 5 10 15 20 25 30 2 ex sx 1.6 ey sy beam size (mm) 1.2 norm. emittance (mm-mrad) 0.8 0.4 R. Hajima 5 10 10 15 20 25 30 z (m) z (m)

Optimum design of the velocity bunching injector merger SCA #1 SCA #2 bunch charge q = 7.7 pC velocity bunching bunching in 6 cav. + on-crest 2 cav. injection 10.9 MeV, 1.3 ps, -90 deg. gradient Eacc = 8.5 MV/m at the SCA#2 exit E = 27.7 MeV, st = 380 fs, sE = 250 keV ex = 0.16 mm-mrad, ey = 0.13 mm-mrad 10 30 9 25 8 st 7 20 6 E bunch length (ps) 5 Energy (MeV) 15 4 3 velocity bunching 10 2 5 1 5 10 15 20 25 30 z (m) 2 0.2 0.4 0.6 0.8 1 5 10 15 20 25 30 ex ey z (m) norm. emittance (mm-mrad) 1.6 sx 1.2 sy beam size (mm) 0.8 0.4 5 10 15 20 25 30 R. Hajima 11 z (m)

Phase plot at the SCA #2 exit R. Hajima

Enhancement of the FEL gain by velocity bunching 0.8 for 5-GeV, 1-Å X-FELO 0.7 0.6 with velocity bunching 0.5 7.7 pC, 0.38 ps, sE/E=5x10-5 small-signal FEL gain 0.4 0.3 0.2 without velocity bunching 20 pC, 2 ps, sE/E=10-4 0.1 0.1 0.15 0.2 0.25 0.3 normalized emittance (mm-mrad) Significant enhancement of the FEL gain by velocity bunching. Gain~40% is possible even with emittance growth during the bunching. R. Hajima

Simulation of XFELO (5 GeV with velocity bunching) saturation After the saturation: pulse duration t=1.2 ps (FWHM) photons/pulse (intra cavity) Np = 2x1010 photons/pulse (extracted) Np = 7x108 R. Hajima

2-Loop Design of 5-GeV ERL HOM-damped cavity high threshold current of HOM BBU allows 2-loop configuration. TESLA (HOM:5×2) ERL (HOM:6×2) R. Hajima

Possible Scheme for Combining ERL and XFELO 5 GeV ERL for SR use : accelerate 2 times 7.5 GeV recirculating linac for XFELO : accelerate 3 times Optional We can switch two operation modes by introducing an orbit bump having lrf/2= 11.5 cm. S. Sakanaka, talk at PF-ISAC (2010) R. Hajima

Growth of emittance and e-spread for 3-pass 7.5-GeV 1st-loop: E=2.5 GeV, r=8.66m, 2x14-cell FODO 2nd-loop: E=5 GeV, r=25m, TBAx30-cell Den DsE 1st loop (2.5 GeV) 8pC/400fs 20pC/2ps incoherent SR 0.029 mm-mrad 34 keV 34 keV coherent SR assumed to be compensated 37 keV 11 keV 2nd loop (5 GeV) 0.027 mm-mrad 130 keV 130 keV 53 keV 16 keV acceptable for FEL DsE/E = 2 x 10-5 R. Hajima 17 17

Stability of SRF A/A< 2·10-5 P < 0.01 deg Cornell LLRF System Demonstrated: Exceptional field stability at QL = 106 to 108 Lorentz-force compensation and fast field ramp up Piezo microphonics compensation with ~20 Hz bandwidth A/A< 2·10-5 P < 0.01 deg M. Liepe, ERL-09 energy stability << FEL gain band width This requirement is fulfilled by current LLRF technology. R. Hajima 18 18

Conclusions Hard X-ray ERL can accommodate XFELO. we can extend the frontier of X-ray beam parameters 0.1nm-XFELO is feasibly realized at 5-GeV ERL with velocity bunching 7.5-GeV beam from a 2-loop 5-GeV ERL an ERL injector is shared, no major modification is needed XFELO can be installed either at a loop or a branch. however, beam loss in a long narrow duct might be a problem for a XFELO in a loop In the Japanese collaboration, XFELO is considered as a part of 5-GeV hard X-ray ERL. R. Hajima 19 19